In response to infection, macrophages adapt their metabolism rapidly to enhance glycolysis and fuel specialized antimicrobial effector functions. Here we show that fungal melanin is an essential molecule required for the metabolic rewiring of macrophages during infection with the fungal pathogen Aspergillus fumigatus. Using pharmacological and genetic tools, we reveal a molecular link between calcium sequestration by melanin inside the phagosome and induction of glycolysis required for efficient innate immune responses. By remodeling the intracellular calcium machinery and impairing signaling via calmodulin, melanin drives an immunometabolic signaling axis towards glycolysis with activation of hypoxia-inducible factor 1 subunit alpha (HIF-1α) and phagosomal recruitment of mammalian target of rapamycin (mTOR). These data demonstrate a pivotal mechanism in the immunometabolic regulation of macrophages during fungal infection and highlight the metabolic repurposing of immune cells as a potential therapeutic strategy.
Background: Invasive pulmonary aspergillosis (IPA) is an infection that primarily affects immunocompromised hosts, including hematological patients and stem-cell transplant recipients. The diagnosis of IPA remains challenging, making desirable the availability of new specific biomarkers. High-throughput methods now allow us to interrogate the immune system for multiple markers of inflammation with enhanced resolution.Methods: To determine whether a signature of alveolar cytokines could be associated with the development of IPA and used as a diagnostic biomarker, we performed a nested case-control study involving 113 patients at-risk.Results: Among the 32 analytes tested, IL-1β, IL-6, IL-8, IL-17A, IL-23, and TNFα were significantly increased among patients with IPA, defining two clusters able to accurately differentiate cases of infection from controls. Genetic variants previously reported to confer increased risk of IPA compromised the production of specific cytokines and impaired their discriminatory potential toward infection. Collectively, our data indicated that IL-8 was the best performing cytokine, with alveolar levels ≥904 pg/mL predicting IPA with elevated sensitivity (90%), specificity (73%), and negative predictive value (88%).Conclusions: These findings highlight the existence of a specific profile of alveolar cytokines, with IL-8 being the dominant discriminator, which might be useful in supporting current diagnostic approaches for IPA.
Our relative inability to predict the development of fungal disease and its clinical outcome raises fundamental questions about its actual pathogenesis. Several clinical risk factors are described to predispose to fungal disease, particularly in immunocompromised and severely ill patients. However, these alone do not entirely explain why, under comparable clinical conditions, only some patients develop infection. Recent clinical and epidemiological studies have reported an expanding number of monogenic defects and common polymorphisms associated with fungal disease. By directly implicating genetic variation in the functional regulation of immune mediators and interacting pathways, these studies have provided critical insights into the human immunobiology of fungal disease. Most of the common genetic defects reported were described or suggested to impair fungal recognition by the innate immune system. Here, we review common genetic variation in pattern recognition receptors and its impact on the immune response against the two major fungal pathogens Candida albicans and Aspergillus fumigatus. In addition, we discuss potential strategies and opportunities for the clinical translation of genetic information in the field of medical mycology. These approaches are expected to transfigure current clinical practice by unleashing an unprecedented ability to personalize prophylaxis, therapy and monitoring for fungal disease.
Highlights d Neuraminidase modulates the host immune response against A. fumigatus d Oseltamivir increases the susceptibility of animal model to pulmonary aspergillosis d SIGLEC15 is important for host defense against A. fumigatus
Even after the revolution of rheumatoid arthritis (RA) treatment with biologic agents, this debilitating disease remains a major clinical problem. The outstanding outcomes of the systemic administration of antibodies (Abs) are narrowed by the risk of serious side effects and limited efficacy due to their short half‐life. Interleukin‐23 (IL‐23) is a crucial pro‐inflammatory cytokine involved in inflammation that potently enhances the generation of T‐helper type‐17 (Th17) cells. Hence, in this work, anti‐IL‐23 Abs are immobilized at the surface of liposomes to increase their therapeutic efficacy, being gold nanoparticles (AuNPs) incorporated to allow monitoring the biodistribution of the liposomes after systemic administration as well as due to their anti‐inflammatory and antioxidant effects. A stable monodispersed liposomes’ suspension with around 130 nm is produced and efficiently biofunctionalized with anti‐IL‐23 Abs. IL‐23 capture and neutralization capacity are confirmed using activated macrophages. Biological assays demonstrate their hemocompatibility and cytocompatibility with human articular chondrocytes, macrophages, and endothelial cells. Moreover, the neutralization of IL‐23 by the biofunctionalized liposomes efficiently decreases the production of IL‐17A by peripheral blood mononuclear cells of healthy donors and RA patients who are activated to Th17 differentiation. Therefore, the developed formulation may be a promising strategy to treat RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.