ABSTRACT. We study the isoperimetric problem for Euclidean space endowed with a continuous density. In dimension one, we characterize isoperimetric regions for a unimodal density. In higher dimensions, we prove existence results and we derive stability conditions, which lead to the conjecture that for a radial log-convex density, balls about the origin are isoperimetric regions. Finally, we prove this conjecture and the uniqueness of minimizers for the density exp(|x| 2 ) by using symmetrization techniques.
We study the isoperimetric problem in Euclidean space endowed with a density. We first consider piecewise constant densities and examine particular cases related to the characteristic functions of half-planes, strips and balls. We also consider continuous modification of Gauss density in R 2 . Finally, we give a list of related open questions.
We consider a smooth Euclidean solid cone endowed with a smooth homogeneous density function used to weight Euclidean volume and hypersurface area. By assuming convexity of the cone and a curvature-dimension condition, we prove that the unique compact, orientable, second order minima of the weighted area under variations preserving the weighted volume and with free boundary in the boundary of the cone are intersections with the cone of round spheres centered at the vertex.
In this work we study the fencing problem consisting of finding a trisection of a 3-rotationally symmetric planar convex body which minimizes the maximum relative diameter. We prove that an optimal solution is given by the so-called standard trisection. We also determine the optimal set giving the minimum value for this functional and study the corresponding universal lower bound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.