[Fe(abpt)2(N(CN)2)2] (abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole) represents the first example of an iron(II) spin-crossover compound containing dicyanamide ligand, [N(CN)(2)](-), as a counterion. It shows an incomplete two-step spin transition with around 37% of HS molecules trapped in the low-temperature region when standard cooling or warming modes, i.e., 1-2 K min(-)(1), were used. The temperature, T(1/2) approximately 86 K, at which 50% of the conversion takes place, is one of the lowest temperatures observed for an iron(II) spin-crossover compound. Quenching experiments at low temperatures have shown that the incomplete character of the conversion is a consequence of slow kinetics. The quenched HS state relaxes back to the LS state displaying noticeable deviation from a single-exponential law. The rate of relaxation was evaluated in the range of temperatures 10-60 K. In the upper limit of temperatures, where thermal activation predominates, the activation energy and the pre-exponential parameter were estimated as E(a) approximately 280 cm(-)(1) and A(HL) approximately 10 s(-)(1), respectively. The lowest value of k(HL) around 1.2 x 10(-)(4) s(-)(1) (T = 10 K) was obtained in the region of temperatures where tunneling predominates. A quantitative light induced excited spin state trapping (LIESST) effect was observed, and the HS --> LS relaxation in the range of temperatures 5-52.5 K was studied. From the Arrhenius plot the two above-mentioned characteristic regimes, thermal-activated (E(a) approximately 431 cm(-)(1) and A(HL) approximately 144 s(-)(1)) and tunneling (k(HL) approximately 1.7 x 10(-)(6) s(-)(1) at 5 K), were characterized. The crystal structure was solved at room temperature. It crystallizes in the triclinic P_1 space group, and the unit cell contains a centrosymmetric mononuclear unit. Each iron atom is in a distorted octahedral environment with bond distances Fe-N(1) = 2.216(2) A, Fe-N(2) = 2.121(2) A, and Fe-N(3) = 2.160(2) A for the pyridine, triazole, and dicyanamide ligands, respectively.
International audienceLength preserving morphisms and inverse of substitutions are two well-studied operations on regular languages. Their connection with varieties generated by power monoids was established independently by Reutenauer and Straubing in 1979. More recently, an ordered version of this theory was proposed by Polák and by the authors. In this paper, we present an improved version of these results and obtain the following consequences. Given a variety of finite ordered monoids V, let P ↑ V be the variety of finite ordered monoids generated by the upper set monoids of members of V. Then P ↑ (P ↑ V) = P ↑ V. This contrasts with the known results for the unordered case: the operator PV corresponding to power monoids satisfies P^3 V = P^4 V, but the varieties V, PV, P^2 V and P^3 V can be distinct. All semigroups considered in this paper are either finite, free or profinite. In particular, we use the term variety of monoids for variety of finite monoids.Les morphismes alphabétiques et les inverses de substitution sont deux opérations bien connues sur les langages rationnels. Leur lien avec les variétés engendrées par les monoïdes de parties a été établi indépendamment par Reutenauer et par Straubing en 1979. Plus récemment, une version ordonnée de cette théorie a été proposée par Polák et par les auteurs. Dans cet article, nous présentons une version améliorée de ces résultats dont nous obtenons les conséquences suivantes. Étant donné une variété de monoïdes ordonnés finis V, soit P↑V la variété de monoïdes ordonnés finis engendrée par les monoïdes des parties closes par le haut des membres de V. Alors P↑(P↑V) = P↑V. Ce résultat fait contraste avec les résultats connus dans le cas non ordonné: l'opérateur PV correspondant au monoïde des parties satisfait P^3 V = P^4 V, mais les variétés V, PV, P^2 V et P^3 V peuvent être distinctes
International audienceLower subsets of an ordered semigroup form in a natural way an ordered semigroup. This lower set operator gives an analogue of the power operator already studied in semigroup theory. We present a complete description of the lower set operator applied to varieties of ordered semigroups. We also obtain large families of fixed points for this operator applied to pseudovarieties of ordered semigroups, including all examples found in the literature. This is achieved by constructing six types of inequalities that are preserved by the lower set operator. These types of inequalities are shown to be independent in a certain sense. Several applications are also presented, including the preservation of the period for a pseudovariety of ordered semigroups whose image under the lower set operator is proper.Les sections commençantes d'un semigroupe ordonné forment de façon naturelle un semigroupe ordonné. L'opérateur qui associe à un semigroupe ordonné le semigroupe ordonné de ses sections commençantes définit un opérateur analogue à l'opérateur qui associe à un semigroupe son semigroupe des parties. Nous présentons une description complète de cet opérateur étendu aux variétés de semigroupes ordonnés. Nous obtenons également de grandes familles de points fixes de cet opérateur appliqué aux pseudovariétés de semigroupes ordonnés, qui recouvrent en particulier tous les exemples connus dans la littérature. Ce résultat est obtenu en construisant six types d'inégalités qui sont conservés par notre opérateur. Nous montrons que ces types d'inégalités sont dans un certain sens indépendants. Nous présentons également plusieurs applications, notamment la préservation de la période pour une pseudovariété de semigroupes ordonnés dont l'image par l'opérateur des sections commençantes est propre
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.