Abstract. This paper introduces a fuzzy rule-based method for the recognition of hand gestures acquired from a data glove, with an application to the recognition of some sample hand gestures of LIBRAS, the Brazilian Sign Language. The method uses the set of angles of finger joints for the classification of hand configurations, and classifications of segments of hand gestures for recognizing gestures. The segmentation of gestures is based on the concept of monotonic gesture segment, sequences of hand configurations in which the variations of the angles of the finger joints have the same sign (non-increasing or non-decreasing). Each gesture is characterized by its list of monotonic segments. The set of all lists of segments of a given set of gestures determine a set of finite automata, which are able to recognize every such gesture.
Regulation of social exchanges refers to controlling social exchanges between agents so that the balance of exchange values involved in the exchanges are continuously kept-as far as possible-near to equilibrium. Previous work modeled the social exchange regulation problem as a POMDP (Partially Observable Markov Decision Process), and defined the policyToBDIplans algorithm to extract BDI (Beliefs, Desires, Intentions) plans from POMDP models, so that the derived BDI plans can be applied to keep in equilibrium social exchanges performed by BDI agents. The aim of the present paper is to extend that BDI-POMDP agent model for self-regulation of social exchanges with a module, based on HMM (Hidden Markov Model), for recognizing and learning partner agents' social exchange strategies, thus extending its applicability to open societies, where new partner agents can freely appear at any time. For the recognition problem, patterns of refusals of exchange proposals are analyzed, as such refusals are produced by the partner agents. For the learning problem, HMMs are used to capture probabilistic state transition and observation functions that model the social exchange strategy of the partner agent, in order to translate them into POMDP's actionbased state transition and observation functions. The paper formally addresses the problem of translating HMMs into POMDP models and vice versa, introducing the translation algorithms and some examples. A discussion on the results of simulations of strategy-based social exchanges is presented, together with an analysis about related work on social exchanges in multiagent systems.Keywords Social exchange strategy · Recognition and learning of social exchange strategies · Self-regulation of social exchange strategies · Partially observable Markov decision process · Hidden Markov model
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.