The objective of this work was to estimate the best approach for prediction and establish a network with better predictive power in white oat using methodologies based on regression, artificial intelligence, and machine learning. Seventy-eight white oat genotypes were evaluated in 2008 and 2009. Were evaluated without and with fungicide, established prediction models in four experimental sets. The characteristics evaluated were grain yield, which was used as a response variable, and ten others as explanatory variables. Assessing the importance of variables through the impact of destructuring or disturbing the information of a given input on the estimation of R2. This importance was estimated by exchanging information or making the phenotypic value of each characteristic constant and checking for changes in the estimates of R2. When the values of a feature are disturbed, the value of R2 decreases, indicating that the feature is important over the others for prediction purposes. The importance of variables using the radial basis function network was estimated according to the MLP. For machine learning, decision trees, bagging, random forest, and boosting were used. The quality of the predictive model was adjusted based on R2 was used to quantify the importance of the phenotypic trait. The characters indicated to assist in decision-making are plant height, leaf rust severity, and lodging percentage. The R2 ranged from 30.14% − 96.45% and 10.57% − 94.61%, for computational intelligence and machine learning, respectively. The bagging technique showed a high estimate of the coefficient of determination more elevated than the others.
Este artigo tem como objetivo apresentar propostas de unidades didáticas que encontrem grietas (WALSH, 2013) para que a língua espanhola possa dialogar com Projetos Integradores da área de Linguagens e suas Tecnologias ou outras, já que, segundo a BNCC, o idioma não integra a área da Formação Geral Básica e, por isso, não foi contemplado no edital e obras do objeto 1 do PNLD 2021. Como aporte teórico, as reflexões e sugestões aqui evidenciadas estão vinculadas à área da Linguística Aplicada em seu caráter transgressivo (PENNYCOOK, 2006), por seu engajamento em práticas problematizadoras, a quebra de regras e o atravessamento reflexivo de fronteiras, e fundamentadas em Fazenda (2002; 2008), Freire (2019), Freire e Faundez (1985), Gama (2018), Hernández e Ventura (1998), Matos (2014) e Walsh (2013; 2017). A partir das propostas das unidades didáticas sobre os temas integradores do PNLD 2021, é possível vislumbrar a integração da língua espanhola nos projetos.
Machine learning and computational intelligence are rapidly emerging in plant breeding, allowing the exploration of big data concepts and predicting the importance of predictors. In this context, the main challenges are how to analyze datasets and extract new knowledge at all levels of research. Predicting the importance of variables in genetic improvement programs allows for faster progress, carrying out an extensive phenotypic evaluation of the germplasm, and selecting and predicting traits that present low heritability and/or measurement difficulties. Although, simultaneous evaluation of traits provides a wide variety of information, identifying which predictor variable is most important is a challenge for the breeder. The traditional approach to variable selection is based on multiple linear regression. It evaluates the relationship between a response variable and two or more independent variables. However, this approach has limitations regarding its ability to analyze high-dimensional data and not capture complex and multivariate relationships between traits. In summary, machine learning and computational intelligence approaches allow inferences about complex interactions in plant breeding. Given this, a systematic review to disentangle machine learning and computational intelligence approaches is relevant to breeders and was considered in this review. We present the main steps for developing each strategy (from data selection to evaluating classification/prediction models and quantifying the best predictor).
O ato de ler constitui um processamento da linguagem que ocorre de forma complexa e de diferentes modos a depender do leitor. Nessa perspectiva, o presente estudo tem como objetivo principal analisar a compreensão de textos em espanhol como língua estrangeira (ELE) com alunos de quatro escolas da rede pública na cidade de Aracaju, Sergipe. Os pressupostos teóricos do trabalho estão baseados em Kleiman (1998), Solé (1998), Koch (2003), Alliende & Condemarín (2005), Marcuschi (2008), entre outros. Para tanto, buscou-se, através de cinco oficinas de leitura com diferentes gêneros textuais, avaliar a compreensão literal e inferencial; verificar a reorganização, a avaliação e a leitura crítica; e comparar, entre os gêneros, as dificuldades encontradas na compreensão. A taxonomia de Barret (1968) foi utilizada como referência para a análise das atividades leitoras, o que possibilitou a descrição dos fatores que podem interferir nesse processo facilitando ou dificultando o trabalho do leitor que apresenta dificuldades na compreensão. Com os dados obtidos, foi possível verificar que a temática tratada no texto, o gênero, a linguagem empregada, e o conhecimento prévio influenciam no processo leitor. No entanto, tais aspectos provocaram alguns questionamentos acerca da limitada compreensão de alguns estudantes que, por estarem no Ensino Médio, deveriam demonstrar mais habilidade na compreensão de temáticas e gêneros que estão além das suas vivências. Visto isso, reconheceu-se a importância de um trabalho ampliado e contextualizado de leitura no contexto escolar, pois isso contribuirá para que o leitor possa trafegar em diferentes contextos comunicativos de modo mais eficaz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.