Kinematic reconstruction of modern ocean basins shows that since Pangea breakup a vast area in the Neotethyan realm was lost to subduction. Here we develop a first‐order methodology to reconstruct the kinematic history of the lost plates of the Neotethys, using records of subducted plates accreted to (former) overriding plates, combined with the kinematic analysis of overriding plate extension and shortening. In Cretaceous‐Paleogene times, most of Anatolia formed a separate tectonic plate—here termed “Anadolu Plate”—that floored part of the Neotethyan oceanic realm, separated from Eurasia and Africa by subduction zones. We study the sedimentary and structural history of the Ulukışla basin (Turkey); overlying relics of this plate to reconstruct the tectonic history of the oceanic plate and its surrounding trenches, relative to Africa and Eurasia. Our results show that Upper Cretaceous‐Oligocene sediments were deposited on the newly dated suprasubduction zone ophiolites (~92 Ma), which are underlain by mélanges, metamorphosed and nonmetamorphosed oceanic and continental rocks derived from the African Plate. The Ulukışla basin underwent latest Cretaceous‐Paleocene N‐S and E‐W extension until ~56 Ma. Following a short period of tectonic quiescence, Eo‐Oligocene N‐S contraction formed the folded structure of the Bolkar Mountains, as well as subordinate contractional structures within the basin. We conceptually explain the transition from extension, to quiescence, to shortening as slowdown of the Anadolu Plate relative to the northward advancing Africa‐Anadolu trench resulting from collision of continental rocks accreted to Anadolu with Eurasia, until the gradual demise of the Anadolu‐Eurasia subduction zone.
[1] We report on the paleomagnetism of 34 sites from lower Oligocene-middle Miocene sediments exposed in the Tertiary Piedmont Basin (TPB, northern Italy). The TPB is formed by a thick ($4000 m) and virtually undeformed sedimentary succession unconformably lying upon Alpine nappes decapitated by extensional exhumation, which in turn are tectonically stacked over the Adriatic foreland. Paleomagnetic directions from 23 (mostly Oligocene) sites were chronologically framed using new biostratigraphic evidence from calcareous nannoplankton. Our data, along with published paleomagnetic results, show that the TPB rotated $50°counterclockwise with respect to Africa in Aquitanian-Serravallian times. The rotation was likely driven by underneath nappe stacking and was synchronous with (further) bending of the Alpine chain. Both the rotation magnitude and its timing are similar to those documented for the Corsica-Sardinia microplate. Therefore the formation of the western Alpine arc (or at least part of its present-day curvature) occurred during the rollback of the Apenninic slab and related back-arc spreading of the Liguro-Provençal Basin and drift of the Corsica-Sardinia block. This suggests a common dynamics driving both the Alpine and the Apennine slab motions. Paleomagnetic data also document that the Adriatic plate has undergone no paleomagnetic rotation since mid-late Miocene times. Anisotropy of magnetic susceptibility data suggests that the TPB, an enigmatic basin arising from a controversial tectonic setting, formed in an extensional regime characterized by a stretching direction approximately orthogonal to the main trend of the underlying chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.