The Oligocene represents an important time period from a wide range of perspectives and includes signifi cant climatic and eustatic variations. The pelagic succession of the Umbria-Marche Apennines (central Italy) includes a complete and continuous sequence of marly limestones and marls, with volcaniclastic layers that enable us to construct an integrated stratigraphic framework for this time period. We present here a synthesis of detailed biostratigraphic, magnetostratigraphic, and chemostratigraphic studies, along with geochronologic results from several biotite-rich volcaniclastic layers, which provide the means for an accurate and precise radiometric calibration of the Oligocene time scale. From this study, the interpolated ages for the Rupelian/Chattian stage boundary, located in the upper half of Chron 10n at meter level 188 in the Monte Cagnero section, and corresponding to the O4/O5 planktonic foraminiferal zonal boundary, are 28.36 Ma (paleomagnetic interpolation), 28.27 ± 0.1 Ma (direct radioisotopic dating), and 27.99 Ma (astrochronological interpolation). These ages appear to be slightly younger than those reported in recent chronostratigraphic time scale compilations. The Monte Cagnero section is a potential candidate for defi ning the Chattian Global Stratotype Section and Point (GSSP) and some reliable criteria are here proposed for marking the Rupelian/Chattian boundary according to International Union of Geological Sciences (IUGS) recommendations.
The Mediterranean region and the Levant have returned some of the clearest evidence of a climatically dry period occurring around 4200 years ago. However, some regional evidence is controversial and contradictory, and issues remain regarding timing, progression, and regional articulation of this event. In this paper, we review the evidence from selected proxies (sea-surface temperature, precipitation, and temperature reconstructed from pollen, δ 18 O on speleothems, and δ 18 O on lacustrine carbonate) over the Mediterranean Basin to infer possible regional climate patterns during the interval between 4.3 and 3.8 ka. The values and limitations of these proxies are discussed, and their potential for furnishing information on seasonality is also ex-plored. Despite the chronological uncertainties, which are the main limitations for disentangling details of the climatic conditions, the data suggest that winter over the Mediterranean involved drier conditions, in addition to already dry summers. However, some exceptions to this prevail -where wetter conditions seem to have persisted -suggesting regional heterogeneity in climate patterns. Temperature data, even if sparse, also suggest a cooling anomaly, even if this is not uniform. The most common paradigm to interpret the precipitation regime in the Mediterranean -a North Atlantic Oscillation-like pattern -is not completely satisfactory to interpret the selected data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.