Background-Circulating levels of interleukin-6 (IL-6) and tumor necrosis factor-␣ (TNF-␣) are elevated in diabetic patients. We assessed the role of glucose in the regulation of circulating levels of IL-6, TNF-␣, and interleukin-18 (IL-18) in subjects with normal or impaired glucose tolerance (IGT), as well as the effect of the antioxidant glutathione. Methods and Results-Plasma glucose levels were acutely raised in 20 control and 15 IGT subjects and maintained at 15 mmol/L for 5 hours while endogenous insulin secretion was blocked with octreotide. In control subjects, plasma IL-6, TNF-␣, and IL-18 levels rose (PϽ0.01) within 2 hours of the clamp and returned to basal values at 3 hours. In another study, the same subjects received 3 consecutive pulses of intravenous glucose (0.33 g/kg) separated by a 2-hour interval. Plasma cytokine levels obtained at 3, 4, and 5 hours were higher (PϽ0.05) than the corresponding values obtained during the clamp. The IGT subjects had fasting plasma IL-6 and TNF-␣ levels higher (PϽ0.05) than those of control subjects. The increase in plasma cytokine levels during the clamping lasted longer (4 hours versus 2 hours, PϽ0.01) in the IGT subjects than in the control subjects, and the cytokine peaks of IGT subjects after the first glucose pulse were higher (PϽ0.05) than those of control subjects. On another occasion, 10 control and 8 IGT subjects received the same glucose pulses as above during an infusion of glutathione; plasma cytokine levels did not show any significant change from baseline after the 3 glucose pulses. Conclusions-Hyperglycemia acutely increases circulating cytokine concentrations by an oxidative mechanism, and this effect is more pronounced in subjects with IGT. This suggests a causal role for hyperglycemia in the immune activation of diabetes.
Long-term vascular complications still represent the main cause of morbidity and mortality in diabetic patients. Although prospective randomized long-term clinical studies comparing the effects of conventional and intensive therapy have demonstrated a clear link between diabetic hyperglycemia and the development of secondary complications of diabetes, they have not defined the mechanism through which excess glucose results in tissue damage. Evidence has accumulated indicating that the generation of reactive oxygen species (oxidative stress) may play an important role in the etiology of diabetic complications. This hypothesis is supported by evidence that many biochemical pathways strictly associated with hyperglycemia (glucose autoxidation, polyol pathway, prostanoid synthesis, protein glycation) can increase the production of free radicals. Furthermore, exposure of endothelial cells to high glucose leads to augmented production of superoxide anion, which may quench nitric oxide, a potent endothelium-derived vasodilator that participates in the general homeostasis of the vasculature. In further support of the consequential injurious role of oxidative stress, many of the adverse effects of high glucose on endothelial functions, such as reduced endothelial-dependent relaxation and delayed cell replication, are reversed by antioxidants. A rational extension of this proposed role for oxidative stress is the suggestion that the different susceptibility of diabetic patients to microvascular and macrovascular complications may be a function of the endogenous antioxidant status.
Abstract-Type 2 diabetes is a worldwide increasing disease resulting from the interaction between a subject's genetic makeup and lifestyle. In genetically predisposed subjects, the combination of excess caloric intake and reduced physical activity induces a state of insulin resistance. When beta cells are no longer able to compensate for insulin resistance by adequately increasing insulin production, impaired glucose tolerance appears, characterized by excessive postprandial hyperglycemia. Impaired glucose tolerance may evolve into overt diabetes. These 3 conditions, ie, insulin resistance, impaired glucose tolerance, and overt diabetes, are associated with an increased risk of cardiovascular disease. Because all these conditions are also accompanied by the presence of an oxidative stress, this article proposes oxidative stress as the pathogenic mechanism linking insulin resistance with dysfunction of both beta cells and endothelium, eventually leading to overt diabetes and cardiovascular disease.
OBJECTIVE—To explore the possibility that oscillating glucose may outweigh A1C levels in determining the risk for cardiovascular diabetes complications. RESEARCH DESIGN AND METHODS—A euinsulinemic hyperglycemic clamp at 5, 10, and 15 mmol/l glucose was given in increasing steps as a single “spike” or oscillating between basal and high levels over 24 h in normal subjects and type 2 diabetic patients. Flow-mediated dilatation, a marker of endothelial function, and plasma 3-nitrotyrosine and 24-h urinary excretion rates of free 8-iso PGF2α, two markers of oxidative stress, were measured over 48 h postclamp. RESULTS—Glucose at two different levels (10 and 15 mmol/l) resulted in a concentration-dependent fasting blood glucose–independent induction of both endothelial dysfunction and oxidative stress in both normal and type 2 diabetic patients. Oscillating glucose between 5 and 15 mmol/l every 6 h for 24 h resulted in further significant increases in endothelial dysfunction and oxidative stress compared with either continuous 10 or 15 mmol/l glucose. CONCLUSIONS—These data suggest that oscillating glucose can have more deleterious effects than constant high glucose on endothelial function and oxidative stress, two key players in favoring cardiovascular complications in diabetes. Concomitant vitamin C infusion can reverse this impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.