The objective of this study was to evaluate the progression of the uterine microbiota from calving until establishment of metritis. Uterine swabs (n ؍ 72) collected at 0, 2, and 6 ؎ 2 days postpartum (dpp) from 12 metritic and 12 healthy cows were used for metagenomic sequencing of the 16S rRNA gene on the Illumina MiSeq platform. A heat map showed that uterine microbiota was established at calving. The microbiota changed rapidly from 0 to 6 ؎ 2 dpp, with a decrease in the abundance of Proteobacteria and an increase in the abundance of Bacteroidetes and Fusobacteria, which were dominant in metritic cows. Uterine microbiota composition was shared; however, metritic and healthy cows could be discriminated using relative abundance of bacterial genera at 0, 2, and 6 ؎ 2 dpp. Bacteroides was the main genus associated with metritis because it was the only genus that showed significantly greater abundance in cows with metritis. As the abundance of Bacteroides organisms increased, the uterine discharge score, a measure of uterine health, worsened. Fusobacterium was also an important genus associated with metritis because Fusobacterium abundance increased as Bacteroides abundance increased and the uterine discharge score worsened as the abundance increased. The correlation with uterine discharge score and the correlation with Bacteroides or Fusobacterium showed that other bacteria, such as Helcoccocus, Filifactor, and Porphyromonas, were also associated with metritis. There were also bacteria associated with uterine health, such as "Candidatus Blochmannia," Escherichia, Sneathia, and Pedobacter. Metritis is a huge concern for the dairy industry worldwide because it is highly prevalent (25 to 40%) and negatively affects the productivity, survival, and welfare of dairy cows (1). Diverse bacteria, including anaerobes and facultative anaerobes, were observed in the uteri of dairy cows within the first 2 weeks postpartum, but they were naturally cleared out within 60 days postpartum (dpp) (1). Culture-based studies observed that Escherichia coli, Trueperella pyogenes, Fusobacterium necrophorum, and Bacteroides spp. (e.g., Prevotella melaninogenica, formerly Bacteroides melaninogenicus) were commonly associated with endometritis or pyometra (1-3).Although culture-based studies have laid out the foundation of our understanding of the uterine microbiota, previous studies might have underestimated the microbial complexity of the intrauterine environment of cows postpartum, given that less than 1% of the microorganisms in many environments are readily cultured under standard laboratory conditions (4). In recent years, cultureindependent techniques such as clone library sequencing (5, 6) and pyrosequencing (7, 8) have been used to characterize the uterine microbiota of cows with metritis (5-7) and endometritis (7,8). Sequencing using the Illumina platform allows for deeper sequencing than has previously been feasible even with pyrosequencing (9). Indeed, evaluating the rarefaction curves from previous 16S rRNA sequencing studies ...
The healing around an immediately loaded screw was described and related to the bone type, manner of loading and observation time. In four adult macaca fasicularis monkeys, 16 titanium vanadium screws were inserted into the infrazygomatic crest and two in the symphysis region. Immediately after insertion, screws were loaded with 25‐ and 50‐g Sentalloy springs extending to the canines. Following an observation period of 1, 2, 4 and 6 months, the screws and the surrounding bone were removed. Undecalcified serial sections perpendicular to the long axis were made and the degree of osseointegration studied. Two of the screws were lost immediately after insertion. Of the remaining screws, osseointegration was present around all, but two. The integration was independent of bone type, trabecular or cortical, but increased with time. Based on the results of this study, the use of screws described in the report can be recommended as anchorage units in cases where conventional anchorage is not possible.
This study compared the two breed groups of Girolando (½ Holstein ½ Gyr vs. ¾ Holstein ¼ Gyr) through analysis of the percentages (stressed or non-stressed cows) of rectal temperature (RT), respiratory rate (RR) and pregnancy rate (PR), and means of production and reproduction parameters to determine the group best suited to rearing in semiarid tropical climate. The experiment was conducted at the farm, in the municipality of Umirim, State of Ceará, Brazil. Two hundred and forty cows were used in a 2 × 2 factorial study; 120 of each group were kept under an intensive system during wet and dry seasons. The environmental parameters obtained were relative humidity (RH), air temperature (AT), and the temperature and humidity index (THI). Pregnancy diagnosis (PD) was determined by ultrasonography 30 days after artificial insemination (AI). The milk production of each cow was recorded with automated milkings in the farm. The variables were expressed as mean and standard error, evaluated by ANOVA at 5% probability using the GLM procedure of SAS. Chi-square test at 5% probability was applied to data of RT, RR, pregnancy rate (PR), and the number of AIs to obtain pregnancy. The majority of ½ Holstein cows showed mean values of RT and RR within the normal range in both periods and shifts. Most animals of the ¾ Holstein group exhibited the RR means above normal during the afternoon in the rainy and dry periods and RT means above normal during the afternoon in the dry period. After analyses, ½ Holstein crossbred cows are more capable of thermoregulating than ¾ Holstein cows under conditions of thermal stress, and the dry period was more impacting for bovine physiology with significant changes in physiological parameters, even for the first breed group. Knowledge of breed groups adapted to climatic conditions of northeastern Brazil can directly assist cattle farmers in selecting animals best adapted for forming herds.
With the introduction of new technologies that lead to the development of new systems of poultry breeding, have been promoted to the animals better thermal comfort conditions. This lessens the great challenge for industrial poultry, with regard to aviary constructions, resulting in increased productivity. It is known that an animal in heat stress condition presents lower productive performance. A lower feed conversion caused by decreased feed intake is the main cause. Multidisciplinary studies have been developed seeking the deepening the needs and possibilities already available about these new systems. With this, this review seeks to approach in a didactic and simplified way the planning and construction of aviary sheds aiming to provide an suitable thermal conditioning for broiler accommodation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.