Very fast amplification of DNA in small volumes can be continuously monitored with a rapid cycler that incorporates fluorimetric detection. Primers were designed to amplify a 157-bp fragment of therpoB gene spanning codons 526 and 531 and a 209-bp fragment of the katG gene spanning codon 315 of Mycobacterium tuberculosis. Most mutations associated with resistance to rifampin (RMP) and isoniazid (INH) in clinical isolates occur in these codons. Two pairs of hybridization probes were synthesized; one in each pair was 3′ labeled with fluorescein and hybridized upstream of the codon with the mutation; the other two probes were 5′ labeled with LightCycler-Red 640. Each pair of probes recognized adjacent sequences in the amplicon. After DNA amplification was finished by using a LightCycler, the temperature at which the Red 640 probe melted from the product was determined in a 3-min melt program. Twenty M. tuberculosis clinical isolates susceptible to streptomycin, INH, RMP, and ethambutol and 36 antibiotic-resistant clinical M. tuberculosis isolates (16 resistant to RMP, 16 to INH, and 4 to both antimicrobial agents) were amplified, and the presence of mutations was determined using single-strand conformation polymorphism analysis, the LiQor automated sequencer, and the LightCycler system. Concordant results were obtained in all cases. Within 30 min, the LightCycler method correctly genotyped all the strains without the need of any post-PCR sample manipulation. Overall, this pilot study demonstrated that real-time PCR coupled to fluorescence detection is the fastest available method for the detection of RMP and INH resistance-associated mutations in M. tuberculosis clinical isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.