This paper investigates the influence of post treatments on the fatigue properties of 316L stainless steel produced by laser powder bed fusion. Miniaturised fatigue samples are built in vertical orientation with optimised process conditions to result in very low porosities and minimal scatter in results. Fatigue performance is evaluated for two different material conditions: as-built and stress-relieved, at a nominal load ratio of -1. Furthermore, the samples are tested with and without surface machining. A thorough microstructural and fractographic analysis is performed to evaluate the impact of the main fatigue influencing factors. The results show that the fatigue behaviour of machined samples with and without stress relief heat treatment exceeds that of conventionally manufactured 316L.
Mechanical performance of additively manufactured (AM) Ti6Al4V scaffolds has mostly been studied in uniaxial compression. However, in real-life applications, more complex load conditions occur. To address this, a novel sample geometry was designed, tested and analyzed in this work. The new scaffold geometry, with porosity gradient between the solid ends and scaffold middle, was successfully used for quasi-static tension, tension-tension (R = 0.1), tension-compression (R = −1) and compression-compression (R = 10) fatigue tests. Results show that global loading in tension-tension leads to a decreased fatigue performance compared to global loading in compression-compression. This difference in fatigue life can be understood fairly well by approximating the local tensile stress amplitudes in the struts near the nodes. Local stress based Haigh diagrams were constructed to provide more insight in the fatigue behavior. When fatigue life is interpreted in terms of local stresses, the behavior of single struts is shown to be qualitatively the same as bulk Ti6Al4V. Compression-compression and tension-tension fatigue regimes lead to a shorter fatigue life than fully reversed loading due to the presence of a mean local tensile stress. Fractographic analysis showed that most fracture sites were located close to the nodes, where the highest tensile stresses are located.
Over the last years, additive manufacturing (AM) techniques such as laser powder bed fusion (L-PBF) have been frequently adopted for efficiently producing biomedical implants. L-PBF offers the advantage of low material waste and high accuracy enabling the production of complex and highly personalized geometries. However, when manufacturing time is considered, the L-PBF production rate is relatively low compared to conventional production techniques. The aim of this paper is to present the impact of layer thickness on static and fatigue properties of CoCr scaffolds produced by means of L-PBF. An increased layer thickness (from 30µm to 60µm) leads to an improvement in terms of production rate of 40 to 50% without affecting the final geometry of the structure. A fatigue test campaign was conducted on both 30µm and 60µm layer thickness samples in "as-built" condition. The analysis of the test results with a local stress method highlighted no significant differences in terms of fatigue performances. In addition, the effect of post-process treatments, such as hot isostatic pressing (HIP) and chemical etching on static and fatigue properties were investigated. It is shown that HIP does not affect the fatigue properties of the scaffolds whilst chemical etching is capable of improving fatigue resistance when the local stress approach is considered.
Laser powder bed fusion (L-PBF) techniques have been increasingly adopted for the production of highly personalized and customized lightweight structures and bio-medical implants. L-PBF can be used with a multiplicity of materials including several grades of titanium. Due to its biocompatibility, corrosion resistance and low density-to-strength ratio, Ti-6Al-4V is one of the most widely used titanium alloys to be processed via L-PBF for the production of orthopedic implants and lightweight structures.Mechanical properties of L-PBF Ti-6Al-4V lattice structures have mostly been studied in uniaxial compression and lately, also in tension. However, in real-life applications, orthopedic implants or lightweight structures in general are subjected to more complex stress conditions and the load directions can be different from the principal axes of the unit cell.In this research, the mechanical behavior of Ti-6Al-4V diamond based lattice structures produced by L-PBF is investigated exploring the energy absorption and failure modes of these metamaterials when the loading directions are different from the principal axis of the unit cell. Moreover, the impact of a heat treatment (i.e. hot isostatic pressing) on the mechanical properties of the aforementioned lattice structures has been evaluated. Results indicate that the mechanical response of the lattice structures is significantly influenced by the direction of the applied load with respect to the unit cell reference system revealing the anisotropic behavior of the diamond unit cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.