published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
A large effort in the analysis of a physical system is the development of a model describing its behavior. The non-linear and time variant characteristic of many mechanical systems can be hardly represented by an analytical model without a remarkable increase of its complexity which contrasts with the need to obtain acceptable results in real-time such as in multibody simulations, system control design and Hardware in the loop (HIL) testing. In this context, the use of artificial neural networks are recognized as a powerful modeling tool to produce accurate model with reduced complexity. On the other hand their response to inputs outside the learning range may lead to unrealistic results. This paper presents an hybrid modeling technique, which combines a physical model with a neural network. The physical model describes the gross behavior of the system and the neural network captures the non-linear non-modeled behaviors or the effect of time-varying parameters. It is also proposed a method to limit the outside-range unpredicted responses. A RC car shock absorber is used as test case. Experimental results show that the neural network improves the physical model output capturing nonlinear aspects such as the hysteresis, the fluid leakage and the increase of its temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.