BackgroundOne of the major challenges in mental medical care is finding out new instruments for an accurate and objective evaluation of the attention deficit hyperactivity disorder (ADHD). Early ADHD identification, severity assessment, and prompt treatment are essential to avoid the negative effects associated with this mental condition.ObjectiveThe aim of our study was to develop a novel ADHD assessment instrument based on Microsoft Kinect, which identifies ADHD cardinal symptoms in order to provide a more accurate evaluation.MethodsA group of 30 children, aged 8-12 years (10.3 [SD 1.4]; male 70% [21/30]), who were referred to the Child and Adolescent Psychiatry Unit of the Department of Psychiatry at Fundación Jiménez Díaz Hospital (Madrid, Spain), were included in this study. Children were required to meet the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria of ADHD diagnosis. One of the parents or guardians of the children filled the Spanish version of the Strengths and Weaknesses of ADHD Symptoms and Normal Behavior (SWAN) rating scale used in clinical practice. Each child conducted a Kinect-based continuous performance test (CPT) in which the reaction time (RT), the commission errors, and the time required to complete the reaction (CT) were calculated. The correlations of the 3 predictors, obtained using Kinect methodology, with respect to the scores of the SWAN scale were calculated.ResultsThe RT achieved a correlation of -.11, -.29, and -.37 with respect to the inattention, hyperactivity, and impulsivity factors of the SWAN scale. The correlations of the commission error with respect to these 3 factors were -.03, .01, and .24, respectively.ConclusionsOur findings show a relation between the Microsoft Kinect-based version of the CPT and ADHD symptomatology assessed through parental report. Results point out the importance of future research on the development of objective measures for the diagnosis of ADHD among children and adolescents.
Obtaining accurate and objective assessments of an individual’s personality is vital in many areas including education, medicine, sports and management. Currently, most personality assessments are conducted using scales and questionnaires. Unfortunately, it has been observed that both scales and questionnaires present various drawbacks. Their limitations include the lack of veracity in the answers, limitations in the number of times they can be administered, or cultural biases. To solve these problems, several articles have been published in recent years proposing the use of movements that participants make during their evaluation as personality predictors. In this work, a multiple linear regression model was developed to assess the examinee’s personality based on their movements. Movements were captured with the low-cost Microsoft Kinect camera, which facilitates its acceptance and implementation. To evaluate the performance of the proposed system, a pilot study was conducted aimed at assessing the personality traits defined by the Big-Five Personality Model. It was observed that the traits that best fit the model are Extroversion and Conscientiousness. In addition, several patterns that characterize the five personality traits were identified. These results show that it is feasible to assess an individual’s personality through his or her movements and open up pathways for several research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.