-The genus Perkinsus includes protistan parasites infecting marine molluscs throughout the world, some of which are associated with mass mortalities. Life cycle involves vegetative proliferation within the host, by which a cell named trophozoite undergoes successive bipartitioning. Other stages have been observed in vitro or in vivo, depending on the species: hypnospore, zoosporangium and zoospore. Molecular taxonomy supports a close affinity between dinoflagellates and Perkinsus spp. Six species of Perkinsus are currently considered valid: P. marinus, P. olseni, P. qugwadi, P. chesapeaki, P. andrewsi and P. mediterraneus. Histology and, above all, incubation of host tissues in Ray's fluid thioglycollate medium (RFTM) are classic diagnostic methods. In addition, more sensitive and quicker molecular diagnostic techniques based on either immunoassays or PCR have been developed for Perkinsus spp. Epizootiological studies have shown a marked influence of water temperature and salinity on P. marinus infection in oysters Crassostrea virginica, thus determining parasite geographical range and temporal disease dynamics (seasonality). In vitro cultures have been established for four Perkinsus spp. Immune response to infection varies depending on host and involves phagocytosis or encapsulation of the parasite cells by host haemocytes. A polypeptide is secreted by clamTapes philippinarum haemocytes that could kill the parasite. In vitro cultured P. marinus cells secrete proteases that are likely involved in degradation of host tissues. P. marinus can suppress the toxic oxygen radicals produced by host haemocytes. In addition to host death, sublethal effects caused by Perkinsus spp. (reduction of fecundity, growth, and condition) may have significant ecological and economic implications. Various strategies have been assayed to mitigate the consequences of P. marinus epizootics on the oyster industry: modifications of management/culture procedures, selective breeding to obtain resistant oyster strains, and the use of triploid oysters and allochthonous oyster species. Some chemotherapeutants have been proved to inhibit or kill parasite cells in vitro.
KeywordsDevelopment; elongation; Elovl4; fatty acid metabolism; very long-chain fatty acids; very long-chain polyunsaturated fatty acids; zebrafish. REVISED Manuscript (text UNmarked) Click here to view linked References SummaryElovl4 is a fatty acyl elongase that participates in the biosynthesis of very long-chain fatty acids (≥C24), which are relatively abundant in skin (saturated chains), or retina, brain and testes (polyunsaturated chains) of mammals. In the present study we characterised two Elovl4 proteins, Elovl4a and Elovl4b, from zebrafish Danio rerio, and investigated their expression patterns during embryonic development.Heterologous expression in baker"s yeast showed that both zebrafish Elovl4 proteins efficiently elongated saturated fatty acids up to C36, with 26:0 appearing the preferred substrate as reported for human ELOVL4. Interestingly, activity for the elongation of PUFA substrates was only shown by Elovl4b, which effectively converted eicosapentaenoic (20:5n-3) and arachidonic (20:4n-6) acids to elongated polyenoic products up to C36. Furthermore, zebrafish Elovl4b may be involved in the biosynthesis of docosahexaenoic acid (22:6n-3, DHA) as it had the capacity to elongate 22:5n-3 to 24:5n-3 which can be subsequently desaturated and chain shortened to DHA in peroxisomes. The distinct functional roles of zebrafish Elovl4 proteins were also reflected in their spatial-temporal expression patterns during ontogeny. Analyses by whole-mount in situ hybridisation in zebrafish embryos showed that elovl4a was expressed in neuronal tissues (wide-spread distribution in the head area), with elovl4b specifically expressed in epiphysis (pineal gland) and photoreceptor cells in the retina. Similarly, tissue distribution in adults revealed that elovl4a transcripts were found in most tissues analysed, whereas elovl4b expression was essentially restricted to eye and gonads. Overall, the results suggest that zebrafish elovl4b resembles other mammalian orthologues in terms of function and expression patterns, whereas elovl4a may represent an alternative elongase not previously described in vertebrates.
Background The Mediterranean mussel Mytilus galloprovincialis is an ecologically and economically relevant edible marine bivalve, highly invasive and resilient to biotic and abiotic stressors causing recurrent massive mortalities in other bivalves. Although these traits have been recently linked with the maintenance of a high genetic variation within natural populations, the factors underlying the evolutionary success of this species remain unclear. Results Here, after the assembly of a 1.28-Gb reference genome and the resequencing of 14 individuals from two independent populations, we reveal a complex pan-genomic architecture in M. galloprovincialis, with a core set of 45,000 genes plus a strikingly high number of dispensable genes (20,000) subject to presence-absence variation, which may be entirely missing in several individuals. We show that dispensable genes are associated with hemizygous genomic regions affected by structural variants, which overall account for nearly 580 Mb of DNA sequence not included in the reference genome assembly. As such, this is the first study to report the widespread occurrence of gene presence-absence variation at a whole-genome scale in the animal kingdom. Conclusions Dispensable genes usually belong to young and recently expanded gene families enriched in survival functions, which might be the key to explain the resilience and invasiveness of this species. This unique pan-genome architecture is characterized by dispensable genes in accessory genomic regions that exceed by orders of magnitude those observed in other metazoans, including humans, and closely mirror the open pan-genomes found in prokaryotes and in a few non-metazoan eukaryotes.
The zebrafish (Danio rerio) has been extensively used in biomedical research as a model to study vertebrate development and hematopoiesis and recently, it has been adopted into varied fields including immunology. After fertilization, larvae survive with only the innate immune responses because adaptive immune system is morphologically and functionally mature only after 4-6 weeks postfertilization. This temporal separation provides a suitable system to study the vertebrate innate immune response in vivo, independently from the adaptive immune response. The transparency of early life stages allows a useful real-time visualization. Adult zebrafish which have complete (innate and adaptative) immune systems offer also advantages over other vertebrate infection models: small size, relatively rapid life cycle, ease of breeding, and a growing list of molecular tools for the study of infectious diseases. In this review, we have tried to give some examples of the potential of zebrafish as a valuable model in innate immunity and inflammation studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.