Abstract-Data compression is the process of representing information in a compact form, in order to reduce the storage requirements and, hence, communication bandwidth. It has been one of the critical enabling technologies for the ongoing digital multimedia revolution for decades. In the variable-length encoding (VLE) compression method, most frequently occurring symbols are replaced by codes with shorter lengths. As it is a common strategy in many compression applications, efficient parallel implementations of VLE are very desirable. In this paper we present CUVLE, a GPU implementation of VLE on CUDA. Our approach is on average more than 20 and 2 times faster than the corresponding CPU serial implementation and the only known state-of-the-art GPU implementation, respectively.
CAVLC (Context-Adaptive Variable Length Coding) is a high-performance entropy method for video and image compression. It is the most commonly used entropy method in the video standard H.264. In recent years, several hardware accelerators for CAVLC have been designed. In contrast, high-performance software implementations of CAVLC (e.g., GPU-based) are scarce. A high-performance GPU-based implementation of CAVLC is desirable in several scenarios. On the one hand, it can be exploited as the entropy component in GPU-based H.264 encoders, which are a very suitable solution when GPU built-in H.264 hardware encoders lack certain necessary functionality, such as data encryption and information hiding. On the other hand, a GPU-based implementation of CAVLC can be reused in a wide variety of GPU-based compression systems for encoding images and videos in formats other than H.264, such as medical images. This is not possible with hardware implementations of CAVLC, as they are non-separable components of hardware H.264 encoders. In this paper, we present CAVLCU, an efficient implementation of CAVLC on GPU, which is based on four key ideas. First, we use only one kernel to avoid the long latency global memory accesses required to transmit intermediate results among different kernels, and the costly launches and terminations of additional kernels. Second, we apply an efficient synchronization mechanism for thread-blocks (In this paper, to prevent confusion, a block of pixels of a frame will be referred to as simply block and a GPU thread block as thread-block.) that process adjacent frame regions (in horizontal and vertical dimensions) to share results in global memory space. Third, we exploit fully the available global memory bandwidth by using vectorized loads to move directly the quantized transform coefficients to registers. Fourth, we use register tiling to implement the zigzag sorting, thus obtaining high instruction-level parallelism. An exhaustive experimental evaluation showed that our approach is between 2.5$$\times$$ × and 5.4$$\times$$ × faster than the only state-of-the-art GPU-based implementation of CAVLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.