There is an orderly topographic arrangement of neurones within auditory brainstem nuclei based on sound frequency. Previous immunolabelling studies in the medial nucleus of the trapezoid body (MNTB) have suggested that there may be gradients of voltage-gated currents underlying this tonotopic arrangement. Here, our electrophysiological and immunolabelling results demonstrate that underlying the tonotopic organization of the MNTB is a combination of medio-lateral gradients of low-and high-threshold potassium currents and hyperpolarization-activated cation currents. Our results also show that the intrinsic membrane properties of MNTB neurones produce a topographic gradient of time delays, which may be relevant to sound localization, following previous demonstrations of the importance of the timing of inhibitory input from the MNTB to the medial superior olive (MSO). Most importantly, we demonstrate that, in the MNTB of congenitally deaf mice, which exhibit no spontaneous auditory nerve activity, the normal tonotopic gradients of neuronal properties are absent. Our results suggest an underlying mechanism for the observed topographic gradient of neuronal firing properties in the MNTB, show that an intrinsic neuronal mechanism is responsible for generating a topographic gradient of time-delays, and provide direct evidence that these gradients rely on spontaneous auditory nerve activity during development.
Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO 4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. Significance. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during acute implantation, inferring good biostability. Electrode impedance at 1 kHz was correlated with background noise and inversely correlated with signal to noise ratio and spike count, regardless of coating. These results collectively confirm a potential for improvement of neural electrode systems by coating with conducting polymers. 2013 IOP Publishing Ltd.
Loss of cochlear hair cells in the rat initiates degenerative change within the primary auditory neurons (ANs) of the cochlea. These degenerative changes include loss of peripheral processes, demyelination and ultimately cell death. This pathology will affect the biophysical processes involved in action potential generation and propagation to an electrical stimulus via a cochlear implant. We measured the response properties of ANs, with particular reference to their refractory behaviour, in normal, short- (9 weeks) and long-term (> 52 weeks) deafened rats. AN loss was moderate in the short-term and severe in the long-term deafened animals. AN activity was elicited using a brief electrical stimulus delivered via a bipolar electrode array implanted into the cochlea. The general response properties of ANs recorded from deafened cochleae were similar to those observed in normal cochleae, i.e. a monotonic increase in the probability of firing and a decrease in response latency and temporal jitter with increasing stimulus intensity. However, the absolute refractory period was significantly prolonged in animals deaf for > 12 months (P = 0.0026). Deafened animals also exhibited a highly significant increase in threshold compared with normal controls (P < 0.001). These functional changes have implications for recipients of cochlear implants and potential therapies directed toward halting or reversing AN pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.