The guest-host intermolecular potentials for the valence excited states of Br in the tetrakaidecahedral(T) and pentakaidecahedral(P) clathrate cages have been calculated using ab initio local correlation methods. We find that the excited states are more strongly bound than the corresponding ground states even in the small T cage where bromine has a tight fit. The angular dependence of the interaction energies is quite anisotropic; this reflects in the corresponding electronic shifts where regions of maxima for blue-shifts in the T cage indicate the presence of halogen bonding. We predict a large temperature dependence of the electronic shifts and compare absolute values with recent experimental studies. This stringent test indicates the reliability of local correlation treatments to describe weak intermolecular forces in ground and excited states.
This work evaluates the performance of different DFT models in the accurate prediction of the guest−host intermolecular potentials for the ground and excited states of Br 2 in the tetrakaidecahedral (T), pentakaidecahedral (P), and hexakaidecahedral (H) clathrate cages. Of a set of density functionals, we found that PBE0-D3 and wb97XD provide a physically sound and quantitatively correct description of the interaction and transition energies of low-lying valence excited states of Br 2 inside these clathrate cages. The importance of correctly modeling dispersive interactions is also analyzed. This study provides the first detailed potential energy surface of the ground and excited states of Br 2 in the largest H cage. Comparisons with the LCC2 method and experimental electronic shifts probe the reliability of PBE0-D3 and wb97XD to describe weak intermolecular forces in the ground and excited states.
The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.
Isomerization kinetics of molecules in the gas phase naturally falls on the microcanonical ensemble of statistical mechanics, which for small systems might significantly differ from the more traditional canonical ensemble. In this work, we explore the examples of isomerization in butane and bibenzyl and to what extent the fully atomistic rate constants in isolated molecules can be reproduced by coarse-graining the system into a lower dimensional potential of mean force (PMF) along a reaction coordinate of interest, the orthogonal degrees of freedom acting as a canonical bath in a Langevin description. Time independent microcanonical rate constants can be properly defined from appropriate state residence time correlation functions; however, the resulting rate constants acquire some time dependence upon canonical averaging of initial conditions. Stationary rate constants are recovered once the molecule is placed into a real condensed environment pertaining to the canonical ensemble. The effective one-dimensional kinetics along the PMF, based on appropriately chosen inertia and damping parameters, quantitatively reproduces the atomistic rate constants at short times but deviates systematically over long times owing to the neglect of some couplings between the system and the bath that are all intrinsically present in the atomistic treatment. In bibenzyl, where stronger temperature effects are noted than in butane, the effective Langevin dynamics along the PMF still performs well at short times, indicating the potential interest of this extremely simplified approach for sampling high-dimensional energy surfaces and evaluating reaction rate constants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.