In this work we calculate the neutrino self-energy in presence of a magnetized medium. The magnetized medium consists of electrons, positrons, neutrinos and a uniform classical magnetic field. The calculation is done assuming the background magnetic field is weak compared to the W -Boson mass squared, as a consequence of which only linear order corrections in the field are included in the W boson propagator. The electron propagator consists all order corrections in the background field. Although the neutrino self-energy in a magnetized medium in various limiting cases has been calculated previously in this article we produce the most general expression of the self-energy in absence of the Landau quantization of the charged gauge fields. We calculate the effect of the Landau quantization of the charged leptons on the neutrino self-energy in the general case. Our calculation is specifically suited for situations where the background plasma may be CP symmetric.
We have calculated the 1/M 4 (M the vector boson mass) order correction to the neutrino selfenergy in a medium. The possible application of this higher order contribution to the neutrino effective potential is considered in the context of the Early Universe hot plasma and of the cosmological Gamma Ray Burst fireball. We found that, depending on the medium parameters and on the neutrino properties (mixing angle and mass square difference) the resonant oscillation of active to active neutrinos is possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.