Abstract:We uncover a method of calculation that proceeds at every step without fixing the gauge or specifying details of the regularisation scheme. Results are obtained by iterated use of integration by parts and gauge invariance identities. The initial stages can even be computed diagrammatically. The method is formulated within the framework of an exact renormalization group for SU (N ) Yang-Mills gauge theory, incorporating an effective cutoff through a manifest spontaneously broken SU (N |N ) gauge invariance. We demonstrate the technique with a compact calculation of the one-loop beta function, achieving a manifestly universal result, and without gauge fixing, for the first time at finite N .
We further develop an algorithmic and diagrammatic computational framework for very general exact renormalization groups, where the embedded regularisation scheme, parametrised by a general cutoff function and infinitely many higher point vertices, is left unspecified. Calculations proceed iteratively, by integrating by parts with respect to the effective cutoff, thus introducing effective propagators, and differentials of vertices that can be expanded using the flow equations; many cancellations occur on using the fact that the effective propagator is the inverse of the classical Wilsonian two-point vertex. We demonstrate the power of these methods by computing the beta function up to two loops in massless four dimensional scalar field theory, obtaining the expected universal coefficients, independent of the details of the regularisation scheme.
Abstract:The requirement that the quantum partition function be invariant under a renormalization group transformation results in a wide class of exact renormalization group equations, differing in the form of the kernel. Physical quantities should not be sensitive to the particular choice of the kernel. We demonstrate this scheme independence in four dimensional scalar field theory by showing that, even with a general kernel, the one-loop beta function may be expressed only in terms of the effective action vertices, and thus, under very general conditions, the universal result is recovered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.