We consider a set of elastic rods periodically distributed over a 3d elastic plate (both of them with axis x 3) and we investigate the limit behavior of this problem as the periodicity ε and the radius r of the rods tend to zero (see fig.1 below). We use a decomposition of the displacement field in the rods of the form u = U + u where the principal part U is a field which is piecewise constant with respect to the variables (x 1 , x 2) (and then naturally extended on a fixed domain), while the perturbation u remains defined on the oscillating domain containing the rods. We derive estimates of U and u in term of the total elastic energy. This allows to obtain a priori estimates on u without solving the delicate question of the dependence, with respect to ε and r, of the constant in Korn's inequality in such an oscillating domain. To deal with the field u, we use a version of an unfolding operator which permits both to rescale all the rods and to work on the same fixed domain as for U to carry out the homogenization process. The above decomposition also helps in passing to the limit and to identify the limit junction conditions between the rods and the 3d plate. Résumé Nous considérons un ensemble de poutresélastiques périodiquement distribuées sur une plaqueélastique 3d (toutes d'axe x 3) et nous analysons le comportement limite de ce problème lorsque la périodicité ε et le rayon r des poutres tendent vers zéro. Nous introduisons une décomposition du champ de déplacement de la forme u = U + u dans laquelle la partie principale U est un champ constant par morceau par rapport aux variables (x 1 , x 2) (et qui s'étend donc naturellement sur un domaine fixe), alors que la perturbation u reste un champ défini sur le domaine oscillant qui représente les poutres. Nous donnons des estimations de U et u en fonction de l'énergieélastique totale. Ceci permet d'obtenir des estimations a priori de u sans chercheràévaluer la dépendance, par rapportà ε et r, de la constante de l'inégalité de Korn pour un tel domaine oscillant. Pour traiter le champ u, nous utilisons une version d'opérateur d'éclatement qui permet simultanément de redimensionner toutes les poutres et de travailler sur le
We consider a quasilinear Neumann problem with exponent p ∈]1, +∞[, in a multidomain of R N , N ≥ 2, consisting of two vertical cylinders, one placed upon the other: the first one with given height and small cross section, the other one with small height and given cross section. Assuming that the volumes of the two cylinders tend to zero with same rate, we prove that the limit problem is well posed in the union of the limit domains, with respective dimension 1 and N − 1. Moreover, this limit problem is coupled if p > N − 1 and uncoupled if 1 < p ≤ N − 1. IntroductionLet N ≥ 2, let ω ⊂ R N −1 be a bounded open connected set with a smooth boundary such that the origin in R N −1 , denoted by 0 , belongs to ω, and let {r n } n∈N , {h n } n∈N be two sequences of positive numbers converging to 0. For every n ∈ N, consider the thin multidomain Ω n = Ω 1 n ∪ Ω 2 n , the union of two vertical cylinders with small volumes: Ω 1 n = r n ω × [0, 1[ with small cross section r n ω and constant height, Ω 2 n = ω×] − h n , 0[ with small height h n and constant cross section (see figure next page). This paper arises from the desire of studying the asymptotic behaviour, as n → +∞, of the following model problem:
In this second paper, we consider again a set of elastic rods periodically distributed over an elastic plate whose thickness tends here to 0. This work is then devoted to describe the homogenization process for the junction of the rods and a thin plate. We use a technique based on two decompositions of the displacement field in each rod and in the plate. We obtain a priori estimates on each term of the two decompositions which permit to exhibit a few critical cases that distinguish the different possible limit behaviors. Then, we completely investigate one of these critical case which leads to a coupled bending-bending model for the rods and the 2d plate. Résumé Dans ce deuxième article, nous reprenons un ensemble de poutresélastiques périodiquement distribuées sur une plaqueélastique dont l'épaisseur tend maintenant vers 0. Il s'agit donc de décrire des modèles d'homogénéisation pour la jonction de poutres et d'une plaque mince. Nous utilisons une technique de décomposition du champ de déplacementà la fois dans chaque poutre et dans la plaque. On obtient des estimations a priori sur chacun des termes de ces décompositions qui mettent en particulier eń evidence les cas critiques qui séparent les différents modèles limites possibles. Ensuite, nous analysons en détail un de ces cas critiques pour lequel on obtient un modèle de couplage flexion-flexion entre les poutres et la plaque 2d.
Onétudie le comportement asymptotique de la solution de l'équation de Laplace dans un domaine dont une partie de la frontière est fortement oscillante. La motivation de ce travail est l'étude d'unécoulement longitudinal dans un domaine infini borné inférieurement par une paroi et supérieurement par une paroi rugueuse. Cette dernière est un plan recouvert d'aspérités périodiques dont la taille dépend d'un petit paramètre ε. On fait l'hypothèse de rugosité forte,à savoir que la hauteur des aspérités reste constante. A l'aide d'un correcteur de couche limite, on obtient une approximation non oscillante de la solution qui est d'ordre ε 3/2) en norme H 1 .
In [4], the first two authors studied a nonlinear monotone problem in a multidomain composed of a part [Formula: see text], with a highly oscillating boundary, placed upon an asymptotically flat part of thickness hε. More precisely, [Formula: see text] is a "forest" of cylinders with fixed height and small cross section of size ε, distributed with ε-periodicity upon the flat domain. The analysis was achieved under the assumption εp/hε → 0 (p - 1 is the growth order of the operator at infinity), as ε tends to 0, and for rescaled external forces hε fε converging to 0 in the (rescaled) flat domain. In the present paper, we present the analysis under the assumption εp/hε → l, with l ∈ [0, +∞], and for general limit forces in the flat domain. When l ∈ ]0, +∞[, we show that a discontinuity in the Dirichlet transmission condition may occur between the limit domain filled by the oscillating boundary and the plate. This discontinuity is derived through solving a nonlinear problem (in general for a different monotone operator) in the unit cell of the oscillating boundary. When l = +∞, we show that a deterministic limit model may hardly be expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.