The disposition of paclitaxel in humans is nonlinear. Paclitaxel metabolism to 6 alpha-hydroxylpaclitaxel is likely an important detoxification pathway. Myelosuppression is related to the duration that plasma paclitaxel concentrations are > or = 0.05 mumol/L. Trials of new doses and schedules of paclitaxel should take into account its nonlinear disposition to rule out adverse clinical consequences, especially if the drug is administered by short infusion. Our pharmacokinetic model should prove to be a powerful tool in predicting paclitaxel disposition, regardless of dose and schedule, and should facilitate further pharmacodynamic investigations.
PTX, as clinically formulated in CEL, is responsible for a nonlinear disposition of DOX and DOL. Nonlinearity is PTX- and DOX-dependent, and possibly caused by competition for biliary excretion of taxanes and anthracyclines mediated by P-gp. Nonlinearity indicates that even minor modifications of dose and infusion duration of DOX and PTX may lead to unpredictable pharmacodynamic consequences. The postulated role of P-gp suggests that CEL is clinically active, and advises caution in designing combinations of PTX with other drugs that are substrate for P-gp.
ET is feasible, devoid of excessive cardiac toxicity, and active. A reciprocal pharmacokinetic interference between the two drugs has pharmacodynamic consequences, and suggests a direct effect of PTX on EPI metabolism requiring ad hoc investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.