We have taken the first steps towards a complete reconstruction of the Mycobacterium tuberculosis regulatory network based on ChIP-Seq and combined this reconstruction with system-wide profiling of messenger RNAs, proteins, metabolites and lipids during hypoxia and re-aeration. Adaptations to hypoxia are thought to have a prominent role in M. tuberculosis pathogenesis. Using ChIP-Seq combined with expression data from the induction of the same factors, we have reconstructed a draft regulatory network based on 50 transcription factors. This network model revealed a direct interconnection between the hypoxic response, lipid catabolism, lipid anabolism and the production of cell wall lipids. As a validation of this model, in response to oxygen availability we observe substantial alterations in lipid content and changes in gene expression and metabolites in corresponding metabolic pathways. The regulatory network reveals transcription factors underlying these changes, allows us to computationally predict expression changes, and indicates that Rv0081 is a regulatory hub.
Ionizing radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, and cerebrovascular injuries. We investigated a population of mice that recovered from high-dose radiation to live normal life spans. These “elite-survivors” harbored distinct gut microbiota that developed after radiation and protected against radiation-induced damage and death in both germ-free and conventionally housed recipients. Elevated abundances of members of the bacterial taxa Lachnospiraceae and Enterococcaceae were associated with postradiation restoration of hematopoiesis and gastrointestinal repair. These bacteria were also found to be more abundant in leukemia patients undergoing radiotherapy, who also displayed milder gastrointestinal dysfunction. In our study in mice, metabolomics revealed increased fecal concentrations of microbially derived propionate and tryptophan metabolites in elite-survivors. The administration of these metabolites caused long-term radioprotection, mitigation of hematopoietic and gastrointestinal syndromes, and a reduction in proinflammatory responses.
Disruption of intestinal microbial communities appears to underlie many human illnesses, but the mechanisms that promote this dysbiosis and its adverse consequences are poorly understood. In patients who received allogeneic hematopoietic cell transplantation (allo-HCT), we describe a high incidence of enterococcal expansion, which was associated with graft-versus-host disease (GVHD) and mortality. We found that Enterococcus also expands in the mouse gastrointestinal tract after allo-HCT and exacerbates disease severity in gnotobiotic models. Enterococcus growth is dependent on the disaccharide lactose, and dietary lactose depletion attenuates Enterococcus outgrowth and reduces the severity of GVHD in mice. Allo-HCT patients carrying lactose-nonabsorber genotypes showed compromised clearance of postantibiotic Enterococcus domination. We report lactose as a common nutrient that drives expansion of a commensal bacterium that exacerbates an intestinal and systemic inflammatory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.