Abstract. Standards for cryptographic protocols have long been attractive candidates for formal verification. It is important that such standards be correct, and cryptographic protocols are tricky to design and subject to non-intuitive attacks even when the underlying cryptosystems are secure. Thus a number of general-purpose cryptographic protocol analysis tools have been developed and applied to protocol standards. However, there is one class of standards, security application programming interfaces (security APIs), to which few of these tools have been applied. Instead, most work has concentrated on developing special-purpose tools and algorithms for specific classes of security APIs. However, there can be much advantage gained from having general-purpose tools that could be applied to a wide class of problems, including security APIs. One particular class of APIs that has proven difficult to analyze using general-purpose tools is that involving exclusive-or. In this paper we analyze the IBM 4758 Common Cryptographic Architecture (CCA) protocol using an advanced automated protocol verification tool with full exclusive-or capabilities, the Maude-NPA tool. This is the first time that API protocols have been satisfactorily specified and analyzed in the Maude-NPA, and the first time XOR-based APIs have been specified and analyzed using a general-purpose unbounded session cryptographic protocol verification tool that provides direct support for AC theories. We describe our results and indicate what further research needs to be done to make such protocol analysis generally effective.
In this paper, we perform an automated analysis of two devices developed by Yubico: YubiKey, designed to authenticate a user to network-based services, and YubiHSM, Yubico's hardware security module. Both are analyzed using the Maude-NPA cryptographic protocol analyzer. Although previous work has been done applying automated tools to these devices, to the best of our knowledge there has been no completely automated analysis to date. This is not surprising, because both YubiKey and YubiHSM, which make use of cryptographic APIs, involve a number of complex features: (i) discrete time in the form of Lamport clocks, (ii) a mutable memory for storing previously seen keys or nonces, (iii) event-based properties that require an analysis of sequences of actions, and (iv) reasoning modulo exclusive-or. In this work, we have been able to both prove properties of YubiKey and find the known attacks on the YubiHSM, in a completely automated way beyond the capabilities of previous work in the literature.
Security ceremonies extend cryptographic protocols with models of human users to allow us to take human behaviors into account when reasoning about security. Actor-network procedures (ANPs) are a wellknown formal model of security ceremonies, and procedure derivation logic (PDL) allows us to reason logically about ANPs. In a security ceremony, different nodes may have different capabilities: computers can encrypt and decrypt messages, whereas humans cannot; a biometric device can capture biometric information, whereas a random number generator used in e-banking cannot; and so on. Furthermore, even if a node has the decryption capability, it must also know the encryption key to decrypt a message. ANPs do not support explicitly specifying node capabilities. In this paper, we extend ANPs to deal with heterogeneous devices by explicitly specifying the nodes' capabilities. We also modify PDL to take into account the knowledge of participants at different points in time. All this allows us to reason about secrecy and authentication in ceremonies with different kinds of devices and human users.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.