Dimensionality Reduction (DR) is attracting more attention these days as a result of the increasing need to handle huge amounts of data effectively. DR methods allow the number of initial features to be reduced considerably until a set of them is found that allows the original properties of the data to be kept. However, their use entails an inherent loss of quality that is likely to affect the understanding of the data, in terms of data analysis. This loss of quality could be determinant when selecting a DR method, because of the nature of each method.In this paper, we propose a methodology that allows different DR methods to be analyzed and compared as regards the loss of quality produced by them. This methodology makes use of the concept of preservation of geometry (quality assessment criteria) to assess the loss of quality. Experiments have been carried out by using the most well-known DR algorithms and quality assessment criteria, based on the literature. These experiments have been applied on 12 real-world datasets.Results obtained so far show that it is possible to establish a method to select the most appropriate DR method, in terms of minimum loss of quality. Experiments have also highlighted some interesting relationships between the quality assessment criteria. Finally, the methodology allows the appropriate choice of dimensionality for reducing data to be established, whilst giving rise to a minimum loss of quality.
Most visualization techniques have traditionally used two-dimensional, instead of three-dimensional representations to visualize multidimensional and multivariate data. In this article, a way to demonstrate the underlying superiority of three-dimensional, with respect to two-dimensional, representation is proposed. Specifically, it is based on the inevitable quality degradation produced when reducing the data dimensionality. The problem is tackled from two different approaches: a visual and an analytical approach. First, a set of statistical tests (point classification, distance perception, and outlier identification) using the two-dimensional and three-dimensional visualization are carried out on a group of 40 users. The results indicate that there is an improvement in the accuracy introduced by the inclusion of a third dimension; however, these results do not allow to obtain definitive conclusions on the superiority of three-dimensional representation. Therefore, in order to draw further conclusions, a deeper study based on an analytical approach is proposed. The aim is to quantify the real loss of quality produced when the data are visualized in two-dimensional and three-dimensional spaces, in relation to the original data dimensionality, to analyze the difference between them. To achieve this, a recently proposed methodology is used. The results obtained by the analytical approach reported that the loss of quality reaches significantly high values only when switching from three-dimensional to two-dimensional representation. The considerable quality degradation suffered in the two-dimensional visualization strongly suggests the suitability of the third dimension to visualize data.
In this paper we propose a method to tracking facial expressions. A system with two cameras is used to capture stereoscopic video sequences. The frames are acquired and analyzed by matching two stereoscopic frames through a correlation method that performs image processing to obtain a resulting frame, and then it is processed to recognize a human face by using the Viola and Jones (VJ) method. The face is located via the Nitzberg operator and it provides the feature points of the eyes, eyebrows, nose and mouth, which are introduced into a Backpropagation neural network that is capable of learning and classifying different types of facial expressions that make a person, feel such as: surprised, scared, unhappy, sad, mad and happy. Finally, the result of this process is recognition of facial expressions.
Abstract. Clinicians could model the brain injury of a patient through his brain activity. However, how this model is defined and how it changes when the patient is recovering are questions yet unanswered. In this paper, the use of MedVir framework is proposed with the aim of answering these questions. Based on complex data mining techniques, this provides not only the differentiation between TBI patients and control subjects (with a 72% of accuracy using 0.632 Bootstrap validation), but also the ability to detect whether a patient may recover or not, and all of that in a quick and easy way through a visualization technique which allows interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.