The salinity barrier that separates marine and freshwater biomes is probably the most important division in biodiversity on Earth. Those organisms that successfully performed this transition had access to new ecosystems while undergoing changes in selective pressure, which often led to major shifts in diversification rates. While these transitions have been extensively investigated in animals, the tempo, mode, and outcome of crossing the salinity barrier have been scarcely studied in other eukaryotes. Here, we reconstructed the evolutionary history of the species complex Cyphoderia ampulla (Euglyphida: Cercozoa: Rhizaria) based on DNA sequences from the nuclear SSU rRNA gene and the mitochondrial cytochrome oxidase subunit I gene, obtained from publicly available environmental DNA data (GeneBank, EukBank) and isolated organisms. A tree calibrated with euglyphid fossils showed that four independent transitions towards freshwater systems occurred from the mid‐Miocene onwards, coincident with important fluctuations in sea level. Ancestral trait reconstructions indicated that the whole family Cyphoderiidae had a marine origin and suggest that ancestors of the freshwater forms were euryhaline and lived in environments with fluctuating salinity. Diversification rates did not show any obvious increase concomitant with ecological transitions, but morphometric analyses indicated that species increased in size and homogenized their morphology after colonizing the new environments. This suggests adaptation to changes in selective pressure exerted by life in freshwater sediments.
Environmental DNA‐based diversity studies have increased in popularity with the development of high throughput sequencing technologies. This permits the potential simultaneous retrieval of vast amounts of molecular data from many different organisms and species, thus contributing to a wide range of biological disciplines. Environmental DNA protocols designed for protists often focused on the highly conserved small subunit of the ribosome gene, that does not permit species‐level assignments. On the other hand, eDNA protocols aiming at species‐level assignments allow a fine level ecological resolution and reproducible results. These protocols are currently applied to organisms living in marine and shallow lotic freshwater ecosystems, often in a bioindication purpose. Therefore, in this study, we present a species‐level eDNA protocol designed to explore diversity of Arcellinida (Amoebozoa: Tubulinea) testate amoebae taxa that is based on mitochondrial cytochrome oxidase subunit I (COI). These organisms are widespread in lentic water bodies and soil ecosystems. We applied this protocol to 42 samples from peatlands, estuaries and soil environments, recovering all the infraorders in Glutinoconcha (with COI data), except for Hyalospheniformes. Our results revealed an unsuspected diversity in morphologically homogeneous groups such as Cylindrothecina, Excentrostoma or Sphaerothecina. With this protocol we expect to revolutionize the design of modern distributional Arcellinida surveys. Our approach involves a rapid and cost‐effective analysis of testate amoeba diversity living in contrasted ecosystems. Therefore, the order Arcellinida has the potential to be established as a model group for a wide range of theoretical and applied studies.
Environmental DNA-based diversity studies have increased in popularity with the development of high throughput sequencing technologies. This permits the potential simultaneous retrieval of vast amounts of molecular data from many different organisms and species, thus contributing to a wide range of biological disciplines. Environmental DNA protocols designed for protists often focused on the highly conserved small subunit of the ribosome gene, that does not permit species-level assignments. On the other hand, eDNA protocols aiming at species-level assignments allow a fine level ecological resolution and reproducible results. These protocols are currently applied to organisms living in marine and shallow lotic freshwater ecosystems, often in a bioindication purpose. Therefore, in this study, we present a species-level eDNA protocol, designed to explore diversity of Arcellinida (Amoebozoa: Tubulinea) testate amoebae taxa, that is based on mitochondrial cytochrome oxidase subunit I (COI). These organisms are widespread in lentic water bodies and soil ecosystems. We applied this protocol to 42 samples from peatlands, estuaries and soil environments, recovering all the infraorders in Glutinoconcha (with COI data), except for Hyalospheniformes. Our results revealed an unsuspected diversity in morphologically homogeneous groups such as Cylindrothecina, Excentrostoma or Sphaerothecina. With this protocol we expect to revolutionize the design of modern distributional Arcellinida surveys. Our approach involve a rapid and cost effective analysis of testate amoeba diversity living in contrasted ecosystems. Therefore, Arcellinida clade have the potential to be established as a model group for an array of theoretical and applied studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.