Flash infrared annealing (FIRA) of perovskite films allows the manufacture of compact layers for photovoltaic devices. This article addresses the use of long and short infrared pulses to control crystal nucleation and growth in perovskite films. By varying the FIRA parameters, it is possible to create high quality films of both fully inorganic and hybrid perovskites. This demonstrates the versatility of the FIRA protocol and establishes it as a fast synthesis process, which provides detailed control over the perovskite morphology and crystallinity.
Understanding and controlling the crystallization of organic–inorganic perovskite materials is important for their function in optoelectronic applications. This control is particularly delicate in scalable single-step thermal annealing methods. In this work, the crystallization mechanisms of flash infrared-annealed perovskite films, grown on substrates with lithographically patterned Au nucleation seeds, are investigated. The patterning enables the in situ observation to study the crystallization kinetics and the precise control of the perovskite nucleation and domain growth, while retaining the characteristic polycrystalline micromorphology with larger crystallites at the boundaries of the crystal domains, as shown by electron backscattering diffraction. Time-resolved photoluminescence measurements reveal longer charge carrier lifetimes in regions with large crystallites on the domain boundaries, relative to the domain interior. By increasing the nucleation site density, the proportion of larger crystallites is increased. This study shows that the combination of rapid thermal annealing with nucleation control is a promising approach to improve perovskite crystallinity and thereby ultimately the performance of optoelectronic devices.
Metamaterial homogenization theories usually start with crude approximations that are valid in certain limits in zero order, such as small frequencies, wave vectors and material fill fractions. In some cases they remain surprisingly robust exceeding their initial assumptions, such as the well-established Maxwell-Garnett theory for elliptical inclusions that can produce reliable results for fill fractions far above its theoretical limitations. We here present a rigorous solution of Maxwell’s equations in binary periodic materials employing a combined Greens-Galerkin procedure to obtain a low-dimensional eigenproblem for the evanescent Floquet eigenmodes of the material. In its general form, our method provides an accurate solution of the multi-valued complex Floquet bandstructure, which currently cannot be obtained with established solvers. It is thus shown to be valid in regimes where homogenization theories naturally break down. For small frequencies and wave numbers in lowest order, our method simplifies to the Maxwell-Garnett result for 2D cylinder and 3D sphere packings. It therefore provides the missing explanation why Maxwell-Garnett works well up to extremely high fill fractions of approximately 50% depending on the constituent materials, provided the inclusions are arranged on an isotropic lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.