This paper proposed two novel beamforming algorithms using convex combination of adaptive filters for smart antenna array. The proposed method consists of applying two individual filters convexly combined through a mixture parameter whose update is based on a normalized adaptation scheme associated to a sigmoidal function. The convergence of the CNLMS-CLMS and CNLMS-IPNLMS algorithms are analyzed in terms of mean-square error (MSE). Numerical simulations results show that the performance in terms of convergence speed of the CNLMS-CLMS and CNLMS-IPNLMS convex combinations is superior to the performance of IPNLMS, CNLMS and CLMS algorithms. We show that the convergence of proposed algorithms presents low sensitivity to variations in both the input signal-to-interference-plus-noise ratio, number of antenna elements as well as step size. Resumo: Este artigo propõe dois novos algoritmos de conformação de feixe usando combinação convexa de filtros adaptativos para arranjos de antenas inteligentes. O método proposto, consiste em utilizar dois filtros individuais combinados convexamente através de um parâmetro de mistura, cuja atualização é baseada em um esquema de adaptação normalizada, associada a uma função sigmoide. A convergência dos algoritmos CNLMS-CLMS e CNLMS-IPNLMS é analisada em termos do erro quadrático médio (MSE). Resultados de simulações numéricas mostram que o desempenho em termos de velocidade de convergência das combinações convexas CNLMS-CLMS e CNLMS-IPNLMS é superior ao desempenho dos algoritmos IPNLMS, CNLMS e CLMS. Mostra-se que a convergência dos algoritmos propostos apresenta baixa sensibilidade às variações na relação sinal-interferência mais ruído, no número de elementos das antenas bem como no tamanho do passo.
In this paper, we show the convergence aspects of LMS (least mean-square) and RLS (least mean-square) algorithms using an affine combination of filters to adaptive beamforming in smart antennas. Specifically, we present the performance investigation of an affine combination of two individual adaptive filters of different classes, considering the mixture parameter of the combination calculated adaptively through the stochastic gradient algorithm, called of-LMS. The aim of the combination is to obtain, in stationary environment, an RLS-LMS adaptive algorithm that outperforms the classic algorithms in terms of convergence speed. The performance of the proposed affine RLS-LMS algorithm is assessed through computational experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.