One of the challenges to continue improving polymeric membranes properties involves the development of novel chemically modified fillers, such as nitrogen-rich 2-D nanomaterials. Graphitic carbon nitride (g-C3N4) has attracted significant interest as a new class of these fillers. Protonation is known to afford it desirable functionalities to form unique architectures for various applications. In the work presented herein, doping of Matrimid® with protonated g-C3N4 to yield Matrimid®/g-C3N4 mixed matrix membranes was found to improve gas separation by enhancing the selectivity for CO2/CH4 by up to 36.9% at 0.5 wt % filler doping. With a view to further enhancing the contribution of g-C3N4 to the performance of the composite membrane, oxygen plasma and hydrazine monohydrate treatments were also assayed as alternatives to protonation. Hydroxylamination by oxygen plasma treatment increased the selectivity for CO2/CH4 by up to 52.2% (at 2 wt % doping) and that for O2/N2 by up to 26.3% (at 0.5 wt % doping). Hydrazination led to lower enhancements in CO2/CH4 separation, by up to 11.4%. This study suggests that chemically-modified g-C3N4 may hold promise as an additive for modifying the surface of Matrimid® and other membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.