Background Advanced motorized prosthetic devices are currently controlled by EMG signals generated by residual muscles and recorded by surface electrodes on the skin. These surface recordings are often inconsistent and unreliable, leading to high prosthetic abandonment rates for individuals with upper limb amputation. Surface electrodes are limited because of poor skin contact, socket rotation, residual limb sweating, and their ability to only record signals from superficial muscles, whose function frequently does not relate to the intended prosthetic function. More sophisticated prosthetic devices require a stable and reliable interface between the user and robotic hand to improve upper limb prosthetic function. New Method Implantable Myoelectric Sensors (IMES®) are small electrodes intended to detect and wirelessly transmit EMG signals to an electromechanical prosthetic hand via an electromagnetic coil built into the prosthetic socket. This system is designed to simultaneously capture EMG signals from multiple residual limb muscles, allowing the natural control of multiple degrees of freedom simultaneously. Results We report the status of the first FDA-approved clinical trial of the IMES® System. This study is currently in progress, limiting reporting to only preliminary results. Comparison with Existing Methods Our first subject has reported the ability to accomplish a greater variety and complexity of tasks in his everyday life compared to what could be achieved with his previous myoelectric prosthesis. Conclusion The interim results of this study indicate the feasibility of utilizing IMES® technology to reliably sense and wirelessly transmit EMG signals from residual muscles to intuitively control a three degree-of-freedom prosthetic arm.
It has been estimated that more than 1.6 million individuals in the United States have undergone at least one amputation. The literature abounds with research of the classifications of such injuries, their etiologies, epidemiologies, treatment regimens, average age of onset (average age of amputation), and much more. The subpopulation that is often overlooked in these evaluations, however, is comprised of individuals who have suffered multiple limb loss. The challenges faced by those with single-limb loss are amplified for those with multiple limb loss. Pain, lifestyle adjustment, and quality of life return are just a few key areas of concern in this population. Along with amputations resulting from trauma, many individuals with multiple amputations have endured them as a result of dysvascular disease. Over recent years, amputations as a result of dysvascular disease have risen to comprise more than 80 % of new amputations occurring in the United States every year. This compares to just 54 % of total current prevalence. Those with diabetes comorbid with dysvascular disease make up 74 % of those with dysvascular amputations, and these individuals with diabetes comorbid with dysvascular disease have a 55 % chance of enduring an amputation of their contralateral limb within 2–3 years of their initial amputation. With the well-documented aging of the nation’s population and the similarly skyrocketing prevalence of dysvascular disease and diabetes, it can be expected that the number of individuals with multiple limb loss will continue to increase in the United States. This article outlines the recommended measures of care for this particular subpopulation, including pain management, behavioral health considerations, strategies for rehabilitation for various levels and variations of multiple limb loss, and the assistive technology and adaptive equipment that might be available for these individuals to best enable them to continue healthy, fulfilling lives following amputation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.