Background/Aims: This study aims to evaluate the pelvic floor (PF) tension response during simulated increased intra-abdominal pressure (IAP) and the vaginal biomechanical properties. Methods: A 3-dimensional computational finite element model for PF was developed based on magnetic resonance imaging from a nulliparous healthy volunteer. The model was used to simulate an IAP of 90 cm H2O and to evaluate the PF stresses in the longitudinal and transversal axes. The vaginal samples were obtained from 15 non-prolapsed female cadavers. A uniaxial tensile test to obtain stiffness and maximum stress of vaginal tissue in the longitudinal and transversal axes was performed. Results: The simulated IAP was associated with a similar PF stress state in the longitudinal and transversal axes. The stiffness and maximum stress in vaginal tissues presented a great variability between subjects. There was no difference in the vaginal tissue elasticity (6.2 ± 1.5 vs. 5.4 ± 1.1 MPa; p = 0.592) and maximum stress (2.3 ± 0.5 vs. 2.6 ± 0.9 MPa; p = 0.692) regarding the measurements in the longitudinal and transversal axes. Conclusion: The isotropic biomechanical behavior of vagina is in agreement with the PF stress state response during increased IAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.