Recently, the term "Industry 4.0" has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modeling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on this Business Analytics usage, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analyzed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modeling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.
This paper presents a two-stage Machine Learning (ML) model to predict the arrival time of In-Process Control (IPC) samples at the quality testing laboratories of a chemical company. The model was developed using three iterations of the CRoss-Industry Standard Process for Data Mining (CRISP-DM) methodology, each focusing on a different regression approach. To reduce the ML analyst effort, an Automated Machine Learning (AutoML) was adopted during the modeling stage of CRISP-DM. The AutoML was set to select the best among six distinct state-of-the-art regression algorithms. Using recent real-world data, the three main regression approaches were compared, showing that the proposed two-stage ML model is competitive and provides interesting predictions to support the laboratory management decisions (e.g., preparation of testing instruments). In particular, the proposed method can accurately predict 70% of the examples under a tolerance of 4 time units.
This paper address a relevant business analytics need of a chemical company, which is adopting an Industry 4.0 transformation. In this company, quality tests are executed at the Analytical Laboratories (AL), which receive production samples and execute several instrumental analyses. In order to improve the AL stock warehouse management, a Machine Learning (ML) project was developed, aiming to estimate the AL materials consumption based on week plans of sample analyses. Following the CRoss-Industry Standard Process for Data Mining (CRISP-DM) methodology, several iterations were executed, in which three input variable selection strategies and two sets of AL materials (top 10 and all consumed materials) were tested. To reduce the modeling effort, an Automated Machine Learning (AutoML) was adopted, allowing to automatically set the best ML model among six distinct regression algorithms. Using real data from the chemical company and a realistic rolling window evaluation, several ML train and test iterations were executed. The AutoML results were compared with two time series forecasting methods, the ARIMA methodology and a deep learning Long Short-Term Memory (LSTM) model. Overall, competitive results were achieved by the best AutoML models, particularly for the top 10 set of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.