BACKGROUNDThe oxidative deterioration of vegetable oils is commonly measured by the peroxide value, thereby not considering the contribution of individual lipid hydroperoxide isomers, which might have different bioactive effects. Thus, the formation of 9‐ and 13‐hydroperoxy octadecadienoic acid (9‐HpODE and 13‐ HpODE), was quantified after short‐term heating and conditions representative of long‐term domestic storage in samples of linoleic acid, canola, sunflower and soybean oil, by means of stable isotope dilution analysis–liquid chromatography‐mass spectroscopy.RESULTSAlthough heating of pure linoleic acid at 180 °C for 30 min led to an almost complete loss of 9‐HpODE and 13‐HpODE, heating of canola, sunflower and soybean oil resulted in the formation of 5.74 ± 3.32, 2.00 ± 1.09, 16.0 ± 2.44 mmol L–1 13‐HpODE and 13.8 ± 8.21, 10.0 ± 6.74 and 45.2 ± 6.23 mmol L–1 9‐HpODE. An almost equimolar distribution of the 9‐ and 13‐HpODE was obtained during household‐representative storage conditions after 56 days, whereas, under heating conditions, an approximately 2.4‐, 2.8‐ and 5.0‐fold (P ≤ 0.001) higher concentration of 9‐HpODE than 13‐HpODE was detected in canola, soybean and sunflower oil, respectively.CONCLUSIONA temperature‐dependent distribution of HpODE regioisomers could be shown in vegetable oils, suggesting their application as markers of lipid oxidation in oils used for short‐term heating. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
The Western diet is characterized by a high consumption of heat-treated fats and oils. During deep-frying processes, vegetable oils are subjected to high temperatures which result in the formation of lipid peroxidation products. Dietary intake of oxidized vegetable oils has been associated with various biological effects, whereas knowledge about the effects of structurally-characterized lipid peroxidation products and their possible absorption into the body is scarce. This study investigates the impact of linoleic acid, one of the most abundant polyunsaturated fatty acids in vegetable oils, and its primary and secondary peroxidation products, 13-HpODE and hexanal, on genomic and metabolomic pathways in human gastric cells (HGT-1) in culture. The genomic and metabolomic approach was preceded by an up-to-six-hour exposure study applying 100 µM of each test compound to the apical compartment in order to quantitate the compounds’ recovery at the basolateral side. Exposure of HGT-1 cells to either 100 µM linoleic acid or 100 µM 13-HpODE resulted in the formation of approximately 1 µM of the corresponding hydroxy fatty acid, 13-HODE, in the basolateral compartment, whereas a mean concentration of 0.20 ± 0.13 µM hexanal was quantitated after an equivalent application of 100 µM hexanal. An integrated genomic and metabolomic pathway analysis revealed an impact of the linoleic acid peroxidation products, 13-HpODE and hexanal, primarily on pathways related to amino acid biosynthesis (p < 0.05), indicating that peroxidation of linoleic acid plays an important role in the regulation of intracellular amino acid biosynthesis.
The ABC transporter ABCA7 has been found to be aberrantly expressed in a variety of cancer types, including breast cancer. We searched for specific epigenetic and genetic alterations and alternative splicing variants of ABCA7 in breast cancer and investigated whether these alterations are associated with ABCA7 expression. By analyzing tumor tissues from breast cancer patients, we found CpGs at the exon 5–intron 5 boundary aberrantly methylated in a molecular subtype-specific manner. The detection of altered DNA methylation in tumor-adjacent tissues suggests epigenetic field cancerization. In breast cancer cell lines, DNA methylation levels of CpGs in promoter exon 1, intron 1, and at the exon 5–intron 5 boundary were not correlated with ABCA7 mRNA levels. By qPCR involving intron-specific and intron-flanking primers, we identified intron-containing ABCA7 mRNA transcripts. The occurrence of intron-containing transcripts was neither molecular subtype-specific nor directly correlated with DNA methylation at the respective exon–intron boundaries. Treatment of breast cancer cell lines MCF-7, BT-474, SK-BR3, and MDA-MB-231 with doxorubicin or paclitaxel for 72 h resulted in altered ABCA7 intron levels. Shotgun proteomics revealed that an increase in intron-containing transcripts was associated with significant dysregulation of splicing factors linked to alternative splicing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.