Abstract-Goal: This paper reports on a novel algorithm for the analysis of electrodermal activity (EDA) using methods of convex optimization. EDA can be considered one of the most common observation channels of sympathetic nervous system activity, and manifests itself as a change in electrical properties of the skin, such as skin conductance (SC). Methods: The proposed model describes SC as the sum of three terms: the phasic component, the tonic component, and an additive white Gaussian noise term incorporating model prediction errors as well as measurement errors and artifacts. This model is physiologically inspired and fully explains EDA through a rigorous methodology based on Bayesian statistics, mathematical convex optimization and sparsity. Results: The algorithm was evaluated in three different experimental sessions to test its robustness to noise, its ability to separate and identify stimulus inputs, and its capability of properly describing the activity of the autonomic nervous system in response to strong affective stimulation. Significance: Results are very encouraging, showing good performance of the proposed method and suggesting promising future applicability, e.g., in the field of affective computing.
This paper reports on a new methodology for the automatic assessment of emotional responses. More specifically, emotions are elicited in agreement with a bi-dimensional spatial localization of affective states. i.e. arousal and valence dimensions. A dedicated experimental protocol was designed and realized where specific affective states are suitably induced while three peripheral physiological signals, i.e. ElectroCardioGram (ECG), ElectroDermal Response (EDR), and ReSPiration activity (RSP), are simultaneously acquired. A group of 35 volunteers was presented with sets of images gathered from the International Affective Picture System (IAPS) having five levels of arousal and five levels of valence, including both a neutral reference level. Standard methods as well as non-linear dynamic techniques were used to extract sets of features from the collected signals. The goal of this paper is to implement an automatic multi-class arousal/valence classifier comparing performance when extracted features from non-linear methods are used as alternative to standard features. Results show that, when non-linearly extracted features are used, the percentages of successful recognition dramatically increase. A good recognition accuracy (>90%) after 40-fold cross-validation steps for both arousal and valence classes was achieved by using the Quadratic Discriminant Classifier (QDC)
Emotion recognition through computational modeling and analysis of physiological signals has been widely investigated in the last decade. Most of the proposed emotion recognition systems require relatively long-time series of multivariate records and do not provide accurate real-time characterizations using short-time series. To overcome these limitations, we propose a novel personalized probabilistic framework able to characterize the emotional state of a subject through the analysis of heartbeat dynamics exclusively. The study includes thirty subjects presented with a set of standardized images gathered from the international affective picture system, alternating levels of arousal and valence. Due to the intrinsic nonlinearity and nonstationarity of the RR interval series, a specific point-process model was devised for instantaneous identification considering autoregressive nonlinearities up to the third-order according to the Wiener-Volterra representation, thus tracking very fast stimulus-response changes. Features from the instantaneous spectrum and bispectrum, as well as the dominant Lyapunov exponent, were extracted and considered as input features to a support vector machine for classification. Results, estimating emotions each 10 seconds, achieve an overall accuracy in recognizing four emotional states based on the circumplex model of affect of 79.29%, with 79.15% on the valence axis, and 83.55% on the arousal axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.