Congenital diaphragmatic hernia (CDH) is associated with thoracic compression of the lungs and heart caused by the herniated abdominal content, leading to cardiac modifications including pressure and vascular changes. Our aim was to investigate the experimental immunoexpression of the capillary proliferation, activation, and density of Ki-67, VEGFR2, and lectin in the myocardium after surgical creation of a diaphragmatic defect. Pregnant New Zealand rabbits were operated on the 25th gestational day in order to create left-sided CDH (LCDH, n=9), right-sided CDH (RCDH, n=9), and Control (n=9), for a total of 27 fetuses in 19 pregnant rabbits. Five days after the procedure, animals were sacrificed, and histology and immunohistochemistry studies of the harvested hearts were performed. Total body weight and heart weight were not significantly different among groups (P=0.702 and 0.165, respectively). VEGFR2 expression was increased in both ventricles in the RCDH group (P<0.0001), and Ki-67 immunoexpression was increased in the left ventricle in the LCDH group compared to Control and RCDH groups (P<0.0001). In contrast, capillary density was reduced in the left ventricle in the LCDH compared to the Control and RCDH groups (P=0.002). Left and right ventricles responded differently to CDH in this model depending on the laterality of the diaphragmatic defect. This surgical model of diaphragmatic hernia was associated with different expression patterns of capillary proliferation, activation, and density in the myocardium of the ventricles of newborn rabbits.
Myelomeningocele (MMC), the commonest type of spina bifida (SB), occurs due to abnormal development of the neural tube and manifest as failure of the complete fusion of posterior arches of the spinal column, leading to dysplastic growth of the spinal cord and meninges. It is associated with several degrees of motor and sensory deficits below the level of the lesion, as well as skeletal deformities, bladder and bowel incontinence, and sexual dysfunction. These children might develop varying degrees of neuropsychomotor delay, partly due to the severity of the injuries that affect the nervous system before birth, partly due to the related cerebral malformations (notably hydrocephalus-which may also lead to an increase in intracranial pressure-and Chiari II deformity). Traditionally, MMC was repaired surgically just after birth; however, intrauterine correction of MMC has been shown to have several potential benefits, including better sensorimotor outcomes (since exposure to amniotic fluid and its consequent deleterious effects is shortened) and reduced rates of hydrocephalus, among others. Fetal surgery for myelomeningocele, nevertheless, would not have been made possible without the development of experimental models of this pathological condition. Hence, the aim of the current article is to provide an overview of the animal models of MMC that were used over the years and describe how this knowledge has been translated into the fetal treatment of MMC in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.