The extent of vibrations experienced by a vehicle driving over natural terrain defines its ride quality. Generally, surface irregularities, ranging from single discontinuities to random variations of the elevation profile, act as a major source of excitation that induces vibrations in the vehicle body through the tire-soil interaction and suspension system. Therefore, the ride response of off-road-vehicles is tightly connected with the ground properties. The objective of this research is to develop a model-based observer that estimates automatically terrain parameters using available onboard sensors. Two acceleration signals, one coming from the vehicle body and one from the wheel suspension are fed into a dynamic vehicle model that takes into account tire/terrain interaction to estimate ground properties. To solve the resulting nonlinear simultaneous state and parameter estimation problem, the Cubature Kalman filter is used that is shown to outperform the standard Extended Kalman filter in terms of accuracy and stability. An extensive set of simulation tests is presented to assess the performance of the proposed estimator under various surface roughness and deformability conditions. Results show the potential of the proposed observer to estimate automatically terrain properties during operations that could be implemented onboard of a general family of intelligent vehicles, ranging from off-road high-speed passenger cars to lightweight and low-speed planetary rovers. Prepared using sagej.cls arXiv:2001.05165v1 [eess.SY] 15 Jan 2020
Sideslip angle is an important variable for understanding and monitoring vehicle dynamics, but there is currently no inexpensive method for its direct measurement. Therefore, it is typically estimated from proprioceptive sensors onboard using filtering methods from the family of the Kalman filter. As a novel alternative, this work proposes modeling the problem directly as a graphical model (factor graph), which can then be optimized using a variety of methods, such as whole-dataset batch optimization for offline processing or fixed-lag smoothing for on-line operation. Experimental results on real vehicle datasets validate the proposal, demonstrating a good agreement between estimated and actual sideslip angle, showing similar performance to state-of-the-art methods but with a greater potential for future extensions due to the more flexible mathematical framework. An open-source implementation of the proposed framework has been made available online.
Surface irregularity acts as a major excitation source in off-road driving that induces vibration of the vehicle body through the tire assembly and the suspension system. When adding ground deformability, this excitation is modulated by the soil properties and operating conditions. The underlying mechanisms that govern ground behavior can be explained and modeled drawing on Terramechanics. Based on this theory, a comprehensive quarter-car model of off-road vehicle is presented that takes into account tire/soil interaction. The model can handle the general case of compliant wheel rolling on compliant ground and it allows ride and road holding performance to be evaluated in the time and frequency domain. An extensive set of simulation tests is included to assess the impact of various surface roughness and ground deformability through a parameter study, showing the potential of the proposed model to describe the behavior of off-road vehicles for design and performance optimization purposes.
There is a growing interest in new sensing technologies and processing algorithms to increase the level of driving automation towards self-driving vehicles. The challenge for autonomy is especially difficult for the negotiation of uncharted scenarios, including natural terrain. This paper proposes a method for terrain unevenness estimation that is based on the power spectral density (PSD) of the surface profile as measured by exteroceptive sensing, that is, by using a common onboard range sensor such as a stereoscopic camera. Using these components, the proposed estimator can evaluate terrain on-line during normal operations. PSD-based analysis provides insight not only on the magnitude of irregularities, but also on how these irregularities are distributed at various wavelengths. A feature vector can be defined to classify roughness that is proved a powerful statistical tool for the characterization of a given terrain fingerprint showing a limited sensitivity to vehicle tilt rotations. First, the theoretical foundations behind the PSD-based estimator are presented. Then, the system is validated in the field using an all-terrain rover that operates on various natural surfaces. It is shown its potential for automatic ground harshness estimation and, in general, for the development of driving assistance systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.