NF-B is a family of related, dimeric transcription factors that are readily activated in cells by signals associated with stress or pathogens. These factors are critical to host defense, as demonstrated previously with mice deficient in individual subunits of NF-B. We have generated mice deficient in both the p50 and p52 subunits of NF-B to reveal critical functions that may be shared by these two highly homologous proteins. We now demonstrate that unlike the respective single knockout mice, the p50/p52 double knockout mice fail to generate mature osteoclasts and B cells, apparently because of defects that track with these lineages in adoptive transfer experiments. Furthermore, these mice present markedly impaired thymic and splenic architectures and impaired macrophage functions. The blocks in osteoclast and B-cell maturation were unexpected. Lack of mature osteoclasts caused severe osteopetrosis, a family of diseases characterized by impaired osteoclastic bone resorption. These findings now establish critical roles for NF-B in development and expand its repertoire of roles in the physiology of differentiated hematopoietic cells.
APE1/Ref-1 (hereafter, APE1), a DNA repair enzyme and a transcriptional coactivator, is a vital protein in mammals. Its role in controlling cell growth and the molecular mechanisms that fine-tune its different cellular functions are still not known. By an unbiased proteomic approach, we have identified and characterized several novel APE1 partners which, unexpectedly, include a number of proteins involved in ribosome biogenesis and RNA processing. In particular, a novel interaction between nucleophosmin (NPM1) and APE1 was characterized. We observed that the 33 N-terminal residues of APE1 are required for stable interaction with the NPM1 oligomerization domain. As a consequence of the interaction with NPM1 and RNA, APE1 is localized within the nucleolus and this localization depends on cell cycle and active rRNA transcription. NPM1 stimulates APE1 endonuclease activity on abasic double-stranded DNA (dsDNA) but decreases APE1 endonuclease activity on abasic single-stranded RNA (ssRNA) by masking the N-terminal region of APE1 required for stable RNA binding. In APE1-knocked-down cells, pre-rRNA synthesis and rRNA processing were not affected but inability to remove 8-hydroxyguanine-containing rRNA upon oxidative stress, impaired translation, lower intracellular protein content, and decreased cell growth rate were found. Our data demonstrate that APE1 affects cell growth by directly acting on RNA quality control mechanisms, thus affecting gene expression through posttranscriptional mechanisms.APE1/Ref-1 (also called HAP1 or APEX, and here referred to as APE1), the mammalian ortholog of Escherichia coli Xth (exonuclease III), is a vital protein (20) that acts as a master regulator of cellular response to oxidative stress conditions and contributes to the maintenance of genome stability (55, 56). APE1 is involved in both the base excision repair (BER) pathways of DNA lesions, acting as the major apurinic/apyrimidinic (AP) endonuclease, and in transcriptional regulation of gene expression as a redox coactivator of different transcription factors, such as early growth response protein 1 (Egr-1), NF-B, and p53 (55, 56). These two biological activities are located in two functionally distinct protein domains. In fact, the N-terminal region, containing the nuclear localization signal (NLS) sequence, is principally devoted to redox activity through Cys65, while the C-terminal one exerts enzymatic activity on the abasic sites of DNA (56, 63). The protein C terminus is highly conserved during phylogenesis, while the N terminus is not. Except in mammals, which always show a high sequence conservation (more than 90%), and Danio, Drosophila, Xenopus, and Dictyostelium (presenting a sequence identity of less than 40%), the N-terminal region is mostly absent in other organisms. A third APE1 function, which is regulated by Lys6/Lys7 acetylation (7), is indirect binding to the negative calcium response elements (nCaRE) of some promoters (i.e., PTH and APE1 promoters), thus acting as a transcriptional repressor (12,30).In different ...
p52 is a subunit of nuclear factor (NF)-κB transcription factors, most closely related to p50. Previously, we have shown that p52, but not p50 homodimers can form transactivating complexes when associated with Bcl-3, an unusual member of the IκB family. To determine nonredundant physiologic roles of p52, we generated mice deficient in p52. Null mutant mice were impaired in their ability to generate antibodies to T-dependent antigens, consistent with an absence of B cell follicles and follicular dendritic cell networks in secondary lymphoid organs, and an inability to form germinal centers. Furthermore, the splenic marginal zone was disrupted. These phenotypes are largely overlapping with those observed in Bcl-3 knockout animals, but distinct from those of p50 knockouts, supporting the notion of a physiologically relevant complex of p52 homodimers and Bcl-3. Adoptive transfer experiments further suggest that such a complex may be critical in accessory cell functions during antigen-specific immune reactions. Possible roles of p52 and Bcl-3 are discussed that may underlie the oncogenic potential of these proteins, as evidenced by recurrent chromosomal translocations of their genes in lymphoid tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.