APE1/Ref-1 (hereafter, APE1), a DNA repair enzyme and a transcriptional coactivator, is a vital protein in mammals. Its role in controlling cell growth and the molecular mechanisms that fine-tune its different cellular functions are still not known. By an unbiased proteomic approach, we have identified and characterized several novel APE1 partners which, unexpectedly, include a number of proteins involved in ribosome biogenesis and RNA processing. In particular, a novel interaction between nucleophosmin (NPM1) and APE1 was characterized. We observed that the 33 N-terminal residues of APE1 are required for stable interaction with the NPM1 oligomerization domain. As a consequence of the interaction with NPM1 and RNA, APE1 is localized within the nucleolus and this localization depends on cell cycle and active rRNA transcription. NPM1 stimulates APE1 endonuclease activity on abasic double-stranded DNA (dsDNA) but decreases APE1 endonuclease activity on abasic single-stranded RNA (ssRNA) by masking the N-terminal region of APE1 required for stable RNA binding. In APE1-knocked-down cells, pre-rRNA synthesis and rRNA processing were not affected but inability to remove 8-hydroxyguanine-containing rRNA upon oxidative stress, impaired translation, lower intracellular protein content, and decreased cell growth rate were found. Our data demonstrate that APE1 affects cell growth by directly acting on RNA quality control mechanisms, thus affecting gene expression through posttranscriptional mechanisms.APE1/Ref-1 (also called HAP1 or APEX, and here referred to as APE1), the mammalian ortholog of Escherichia coli Xth (exonuclease III), is a vital protein (20) that acts as a master regulator of cellular response to oxidative stress conditions and contributes to the maintenance of genome stability (55, 56). APE1 is involved in both the base excision repair (BER) pathways of DNA lesions, acting as the major apurinic/apyrimidinic (AP) endonuclease, and in transcriptional regulation of gene expression as a redox coactivator of different transcription factors, such as early growth response protein 1 (Egr-1), NF-B, and p53 (55, 56). These two biological activities are located in two functionally distinct protein domains. In fact, the N-terminal region, containing the nuclear localization signal (NLS) sequence, is principally devoted to redox activity through Cys65, while the C-terminal one exerts enzymatic activity on the abasic sites of DNA (56, 63). The protein C terminus is highly conserved during phylogenesis, while the N terminus is not. Except in mammals, which always show a high sequence conservation (more than 90%), and Danio, Drosophila, Xenopus, and Dictyostelium (presenting a sequence identity of less than 40%), the N-terminal region is mostly absent in other organisms. A third APE1 function, which is regulated by Lys6/Lys7 acetylation (7), is indirect binding to the negative calcium response elements (nCaRE) of some promoters (i.e., PTH and APE1 promoters), thus acting as a transcriptional repressor (12,30).In different ...
Apurinic/apyrimidinic endonuclease 1 (APE1), an essential protein in mammals, is involved in base excision DNA repair (BER) and in regulation of gene expression, acting as a redox co-activator of several transcription factors. Recent findings highlight a novel role for APE1 in RNA metabolism, which is modulated by nucleophosmin (NPM1). The results reported in this article show that five lysine residues (K24, K25, K27, K31 and K32), located in the APE1 N-terminal unstructured domain, are involved in the interaction of APE1 with both RNA and NPM1, thus supporting a competitive binding mechanism. Data from kinetic experiments demonstrate that the APE1 N-terminal domain also serves as a device for fine regulation of protein catalytic activity on abasic DNA. Interestingly, some of these critical lysine residues undergo acetylation in vivo. These results suggest that protein–protein interactions and/or post-translational modifications involving APE1 N-terminal domain may play important in vivo roles, in better coordinating and fine-tuning protein BER activity and function on RNA metabolism.
MLL3 (also named KMT2C) is a COMPASS subunit that implements H3K4 mono-methylation at gene enhancers. KMT2C frequently incurs point-mutations across a range of human tumors, nevertheless precisely how these lesions alter MLL3 function and contribute to oncogenesis is unclear. Here we report a cancer mutational hotspot in MLL3 within its Plant Homeo Domain (PHD) repeats and demonstrate that this domain mediates association with the histone H2A deubiquitinase and tumor suppressor BAP1. Cancer-associated MLL3 PHD mutations disrupt the interaction between MLL3 and BAP1 and correlate with poor patient survival. Cancer cells bearing MLL3 PHD mutations or lacking BAP1, exhibit reduced enhancer recruitment of MLL3 and the H3K27 demethylase UTX (KDM6A). As the result, inhibiting the H3K27 methyltransferase activity of polycomb repressor complex 2 (PRC2) in tumor cells harboring BAP1 or MLL3 mutations, restores normal gene expression patterns and impairs cell proliferation in vivo. This study provides mechanistic insight for the role of MLL3 PHD mutations in cancer and points to restoration of the balanced state of polycomb-COMPASS for the treatment of cancers resulting from mutations in these epigenetic factors.
APOBEC enzymes are responsible for a mutation signature (TCW>T/G) implicated in a wide variety of tumors. We explore the APOBEC mutational signature in bladder cancer and the relationship with specific mutations, molecular subtype, gene expression, and survival using sequencing data from The Cancer Genome Atlas (n = 395), Beijing Genomics Institute (n = 99), and Cancer Cell Line Encyclopedia. Tumors were split into “APOBEC-high” and “APOBEC-low” based on APOBEC enrichment. Patients with APOBEC-high tumors have better overall survival compared to those with APOBEC-low tumors (38.2 vs. 18.5 months, p = 0.005). APOBEC-high tumors are more likely to have mutations in DNA damage response genes (TP53, ATR, BRCA2) and chromatin regulatory genes (ARID1A, MLL, MLL3), while APOBEC-low tumors are more likely to have mutations in FGFR3 and KRAS. APOBEC3A and APOBEC3B expression correlates with mutation burden, regardless of bladder tumor molecular subtype. APOBEC mutagenesis is associated with increased expression of immune signatures, including interferon signaling, and expression of APOBEC3B is increased after stimulation of APOBEC-high bladder cancer cell lines with IFNγ. In summary, APOBEC-high tumors are more likely to have mutations in DNA damage response and chromatin regulatory genes, potentially providing more substrate for APOBEC enzymes, leading to a hypermutational phenotype and the subsequent enhanced immune response.
The apurinic endonuclease 1/redox factor-1 (APE1) has a crucial function in DNA repair and in redox signaling in mammals, and recent studies identify it as an excellent target for sensitizing tumor cells to chemotherapy. APE1 is an essential enzyme in the base excision repair pathway of DNA lesions caused by oxidation and alkylation. As importantly, APE1 also functions as a redox agent maintaining transcription factors involved in cancer promotion and progression in an active reduced state. Very recently, a new unsuspected function of APE1 in RNA metabolism was discovered, opening new perspectives for this multifunctional protein. These observations underline the necessity to understand the molecular mechanisms responsible for fine-tuning its different biological functions. This survey intends to give an overview of the multifunctional roles of APE1 and their regulation in the context of considering this protein a promising tool for anticancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.