Background and aim: Systemic lupus erythematosus (SLE) is associated with increased risk of cardiovascular disease (CVD). Among many mechanisms, accelerated atherosclerosis, endothelial dysfunction, and hypercoagulability play a main role. Here, we investigate whether inflammatory, serological and clinical markers of SLE determine and correlate with arterial stiffness in SLE patients. Materials and methods: Routine blood samples, inflammatory mediators, specific antibodies, and 24 h proteinuria were measured in 43 SLE patients and 43 age and sex-matched controls using routine laboratory assays. We also assessed arterial stiffness by measuring radial artery applanation tonometry-derived augmentation index (AI), normalized AI (AIx@75), aortic pulse pressure, central systolic, diastolic and peripheral blood pressure. Results: SLE patients showed a significantly greater arterial stiffness vs. controls, as demonstrated by the significantly higher AIx@75 and aortic pulse pressure. Interestingly, regression analysis showed that age, systolic pulse pressure, inflammatory markers (erythrocyte sedimentation rate and C-reactive protein), daily dose of glucocorticoids, and cumulative organ damage positively correlated with arterial stiffness. Conclusions: SLE patients show increased arterial stiffness which correlates with markers of inflammation, that is involved in early alterations in arterial walls. Applanation tonometry can be used to screen SLE patients for subclinical vascular damage to implement prevention strategies for CVD.
Our aim was to identify subclinical right ventricular (RV) alterations in systemic lupus erythematosus (SLE) by combining standard and three-dimensional echocardiography (3DE). Fifty SLE patients without concomitant cardiac disease and 50 healthy controls, matched for age and gender, were enrolled. Disease damage was evaluated by inflammatory markers and SLE damage index. All patients underwent an echo-Doppler examination with 3DE assessment of RV function, RV septal and lateral longitudinal strain. The two groups had comparable body mass index and blood pressure. RV transversal middle diameter and pulmonary arterial pressure were significantly higher in SLE compared to controls. By 3DE, RV end-systolic volume ( p = 0.037) was greater, whereas stroke volume ( p = 0.023), ejection fraction ( p < 0.0001) and septal and lateral longitudinal strain (both p < 0.0001) were lower in SLE. SLE damage index ≥ 1 was negatively associated with tricuspid annular plane systolic excursion (TAPSE) ( p < 0.002), tricuspid E/A ratio ( p = 0.003), RV ejection fraction ( p < 0.05), lateral longitudinal strain ( p < 0.0001) and septal longitudinal strain ( p = 0.04). By separate multivariate models, after adjusting for age, C reactive protein and proBNP, SLE damage index was independently associated with TAPSE ( p = 0.009) and RV lateral longitudinal strain ( p = 0.007). In conclusion, a subclinical RV systolic dysfunction is detectable in SLE by 3DE, RV lateral wall strain being a key parameter. RV dysfunction is associated with cumulative disease damage.
BackgroundThe Nef protein can be detected in plasma of HIV-1-infected patients and plays a role in the pathogenesis of HIV-1. Nef produced during the early stages of infection is fundamental in creating the ideal environment for viral replication, e.g. by reducing the ability of infected cells to induce an immune response.AimBased on previous experience showing that both Tat and gp41 of HIV-1 are potent chemotactic factors for basophils and mast cells, and gp120 is a powerful stimulus for the release of histamine and cytokines (IL-4 and IL-13) from basophils, in this study we aimed to verify if the HIV Nef protein can exert some effects on basophils and mast cells purified from healthy volunteers through the interaction with the CXCL12 receptor, CXCR4.MethodsBasophils purified from peripheral blood cells of 30 healthy volunteers and mast cells obtained from lung tissue of ten healthy volunteers were tested by flow cytometric analysis, chemotaxis and chemokine production by ELISA assays.ResultsNef is a potent chemoattractant for basophils and lung mast cells obtained from healthy, HIV-1 and HIV-2 seronegative individuals. Incubation of basophils and mast cells with Nef induces the release of chemokines (CXCL8/IL-8 and CCL3/MIP-1α). The chemotactic activity of Nef on basophils and mast cells is mediated by the interaction with CXCR4 receptors, being blocked by preincubation of FcεRI+ cells with an anti-CXCR4 Ab. Stimulation with Nef or CXCL12/SDF-1α, a CXCR4 ligand, desensitizes basophils to a subsequent challenge with an autologous or heterologous stimulus.ConclusionsThese results indicate that Nef, a HIV-1-encoded α-chemokine homolog protein, plays a direct role in basophils and mast cell recruitment and activation at sites of HIV-1 replication, by promoting directional migration of human FcεRI+ cells and the release of chemokines from these cells. Together with our previous results, these data suggest that FcεRI+ cells contribute to the dysregulation of the immune system in HIV-1 infection.
Eosinophils participate in the immune response against Helicobacter pylori, but little is known about their role in the gastritis associated to the infection. We recently demonstrated that the Hp(2-20) peptide derived from H. pylori accelerates wound healing of gastric mucosa by interacting with N-formyl peptide receptors (FPRs) expressed on gastric epithelial cells. The aim of the present study was to investigate whether eosinophils play a role in the repair of gastric mucosa tissue during H. pylori infection. Immuno-histochemistry and transmission electron microscopy were used to detect eosinophils in gastric mucosal biopsies. Eosinophil re-distribution occurred in the gastric mucosa of H. pylori-infected patients: their density did not change in the deep mucosal layer, whereas it increased in the superficial lamina propria just below the foveolar epithelium; eosinophils entered the epithelium itself as well as the lumen of foveolae located close to the area harboring bacteria, which in turn were also engulfed by eosinophils. The H. pylori-derived peptide Hp(2-20) stimulated eosinophil migration through the engagement of FPR2 and FPR3, and also induced production of VEGF-A and TGF-beta, two key mediators of tissue remodelling. We also demonstrate that Hp(2-20) in vivo induced eosinophil infiltration in rat gastric mucosa after injury brought about by indomethacin. This study suggests that eosinophil infiltrate could modulate the capacity of gastric mucosa to maintain or recover its integrity thereby shedding light on the role of eosinophils in H. pylori infection.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial inflammation and hyperplasia, autoantibody production, cartilage and bone destruction and several systemic features. Cardiovascular, pulmonary, psychological, and muscle involvement are the main comorbidities of RA and are responsible for the severity of the disease and long-term prognosis. Pharmacological treatment of rheumatic diseases has evolved remarkably over the past years. In addition, the widespread adoption of treat to target and tight control strategies has led to a substantial improvement of outcomes, so that drug-free remission is nowadays a realistic goal in the treatment of RA. However, despite the availability of multiple therapeutic options, up to 40% of patients do not respond to current treatments, including biologics. Small-molecule therapies offer an alternative to biological therapies for the treatment of inflammatory diseases. In the past 5 years, a number of small-molecule compounds targeting Janus kinases (JAKs) have been developed. Since JAKs are essential for cell signaling in immune cells, in particular controlling the response to many cytokines, their inhibitors quickly became a promising class of oral therapeutics that proved effective in the treatment of RA. Tofacitinib is the first Janus kinase (JAK) inhibitor approved for the treatment of RA, followed more recently by baricitinib. Several other JAK inhibitors, are currently being tested in phase II and III trials for the treatment of a different autoimmune diseases. Most of these compounds exhibit an overall acceptable safety profile similar to that of biologic agents, with infections being the most frequent adverse event. Apart from tofacitinib, safety data on other JAK inhibitors are still limited. Long-term follow up and further research are needed to evaluate the general safety profile and the global risk of malignancy of these small molecules, although no clear association with malignancy has been reported to date. Here, we will review the main characteristics of JAK inhibitors, including details on their molecular targets and on the clinical evidences obtained so far in the treatment of RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.