Digital contact tracing is a relevant tool to control infectious disease outbreaks, including the COVID-19 epidemic. Early work evaluating digital contact tracing omitted important features and heterogeneities of real-world contact patterns influencing contagion dynamics. We fill this gap with a modeling framework informed by empirical high-resolution contact data to analyze the impact of digital contact tracing in the COVID-19 pandemic. We investigate how well contact tracing apps, coupled with the quarantine of identified contacts, can mitigate the spread in real environments. We find that restrictive policies are more effective in containing the epidemic but come at the cost of unnecessary large-scale quarantines. Policy evaluation through their efficiency and cost results in optimized solutions which only consider contacts longer than 15–20 minutes and closer than 2–3 meters to be at risk. Our results show that isolation and tracing can help control re-emerging outbreaks when some conditions are met: (i) a reduction of the reproductive number through masks and physical distance; (ii) a low-delay isolation of infected individuals; (iii) a high compliance. Finally, we observe the inefficacy of a less privacy-preserving tracing involving second order contacts. Our results may inform digital contact tracing efforts currently being implemented across several countries worldwide.
Temporal graphs are structures which model relational data between entities that change over time. Due to the complex structure of data, mining statistically significant temporal subgraphs, also known as temporal motifs, is a challenging task. In this work, we present an efficient technique for extracting temporal motifs in temporal networks. Our method is based on the novel notion of egocentric temporal neighborhoods, namely multi-layer structures centered on an ego node. Each temporal layer of the structure consists of the first-order neighborhood of the ego node, and corresponding nodes in sequential layers are connected by an edge. The strength of this approach lies in the possibility of encoding these structures into a unique bit vector, thus bypassing the problem of graph isomorphism in searching for temporal motifs. This allows our algorithm to mine substantially larger motifs with respect to alternative approaches. Furthermore, by bringing the focus on the temporal dynamics of the interactions of a specific node, our model allows to mine temporal motifs which are visibly interpretable. Experiments on a number of complex networks of social interactions confirm the advantage of the proposed approach over alternative non-egocentric solutions. The egocentric procedure is indeed more efficient in revealing similarities and discrepancies among different social environments, independently of the different technologies used to collect data, which instead affect standard non-egocentric measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.