The aggregation behavior in aqueous solution of a number of ionic liquids was investigated at ambient conditions by using three techniques: fluorescence, interfacial tension, and (1)H NMR spectroscopy. For the first time, the fluorescence quenching effect has been used for the determination of critical micelle concentrations. This study focuses on the following ionic liquids: [Cnmpy]Cl (1-alkyl-3-methylpyridinium chlorides) with different linear alkyl chain lengths (n=4, 10, 12, 14, 16, or 18), [C12mpip]Br (1-dodecyl-1-methylpiperidinium bromide), [C12mpy]Br (1-dodecyl-3-methylpyridinium bromide), and [C12mpyrr]Br (1-dodecyl-1-methylpyrrolidinium bromide). Both the influence of the alkyl side-chain length and the type of ring in the cation (head) on the CMC were investigated. A comparison of the self-aggregation behavior of ionic liquids based on 1-alkyl-3-methylpyridinium and 1-alkyl-3-methylpyridinium cations is provided. It was observed that 1-alkyl-3-methylpyridinium ionic liquids could be used as quenchers for some fluorescence probes (fluorophores). As a consequence, a simple and convenient method to probe early evidence of aggregate formation was established.
Fast excited state proton transfer reactions at the surface of anionic sodium dodecyl sulfate (SDS) micelles have been investigated using the photoacid 4-methyl-7-hydroxyflavylium (HMF) chloride as probe. The acidbase kinetics of excited HMF are straightforward in water, with biexponential fluorescence decays reflecting ultrafast deprotonation of the excited acid (AH + )* (k d ) 1.5 × 10 11 s -1 or ca. 6 ps) and diffusion-controlled protonation of the excited base A* (k p ) 2.3 × 10 10 L mol -1 s -1 at 20°C). In aqueous micellar SDS solutions, the kinetics are much more complex; triple exponential fluorescence decays are observed at all pH values and temperatures examined. The longest decay time (τ 1 ) 760 ps at 22°C), observed only for (AH + )* and uncoupled from the acid-base equilibrium, is assigned to excitation of HMF in orientations incapable of prompt transfer of the proton to water, i.e., that must rotate to expose the acidic OH group to water (k rot ) 1.2 × 10 9 s -1 or ca. 800 ps at 22°C). The other two decay times, τ 3 and τ 2 , are due to emission from the species involved in the acid-base reaction at the micelle surface. Deprotonation of (AH + )* is slightly slower in SDS micelles (k d ) 3.4 × 10 10 s -1 or ca. 20 ps) than in water. Two processes are operative in the back protonation of A*: (i) pH-independent unimolecular reprotonation in the initially formed geminate compartmentalized pair (A*‚‚‚H 3 O + ) (k r ) 8.8 × 10 9 s -1 ) and (ii) pH-dependent bimolecular protonation of A* via entry of an aqueous phase proton into the micelle (k p ) 1.6 × 10 11 M -1 s -1 ). Dissociation of the geminate pair (k diss ) 1.6 × 10 9 s -1 ) forms A* at the micellar surface. The present study thus provides a rather detailed kinetic picture of the initial steps involved in an ultrafast excited state proton transfer process at the surface of a typical anionic micelle.
The intra- and/or intermolecular aggregation and the structure of the aggregates formed in water by hydrophobically modified dextrans, prepared by covalent attachment of cholic or deoxycholic acid to dextran of M v = 30 000, were investigated by various fluorescence and light scattering techniques. From the variation of the fluorescence quantum yield and fluorescence emission maximum of a hydrophobic fluorescent probe, N-phenyl-1-naphthylamine, with polymer concentration, we conclude about the value of the critical aggregation concentration, cac, and the existence of intermolecular aggregation below cac. The values of cac are found to depend on the nature of the hydrophobic moiety and the degree of substitution. The hydrodynamic radii of the aggregates are determined using dynamic light scattering, and the apparent weight-average molecular weights, radii of gyration, and second virial coefficients are evaluated by static light scattering over a very large concentration range. The results show that below a given critical concentration the hydrophobically modified dextrans form big and loose aggregates and small and compact ones at concentrations higher than 0.2 g %. A transition between the two types of aggregates begins at 0.02 g %, the concentration that we keep calling cac despite the fact that it is the concentration at which the formation of compact aggregates begins rather than that for which intermolecular aggregation occurs. The results are compared with those for unmodified dextran for which no aggregation was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.