This paper describes a knowledge-based decision support system (KB-DSS) to improve the preparedness of crisis situations induced by natural and technological hazards. The proposed KB-DSS aims to manage the potential cascading effects generated by a triggering hazard assessing the possible event time histories based on interconnected probabilistic simulation models. From a methodological point of view, a decision model based on two Multi-Criteria Decision-Making (MCDM) algorithms follows a cascading effect simulation model. This combination allows to support the decision maker in comparing a set of mitigation strategies on the basis of their expected impacts and his priorities. The algorithm is based on an ensemble approach, which combines decisions over an array of possible impact scenarios, instead of only relying on the average impact scenario. An application of the KB-DSS to the case of a possible reactivation of Nea Kameni volcano in Santorini is presented to show how the proposed architecture could be applied to a real case. The proposed methodology supports the emergency planners in making the best decisions supporting them also in the choice of the best timing for the intervention.
Information and Communication Technologies (ICT) are considered a key instrument to improve efficiency and flexibility of industrial processes. This paper provides an experience report about the application of an ICT-based approach, derived from the Internet-of-Things (IoT) concept, to logistics in industrial manufacturing environments, aimed at enhancing awareness and control of logistic flows. The described solution performs assets management and inbound-outbound monitoring of goods by interconnecting business processes entities and devices providing physicalworld data through an existing IoT-oriented middleware named VIRTUS. The VIRTUS Middleware, based on the open XMPP standard protocol and leveraging the OSGi framework, provides a scalable, agile, event-driven, network independent tool to manage an ecosystem of heterogeneous interconnected objects. The described solution has been validated within an actual industrial environment made of geographically-separated production plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.