Since most food plants have cold wet growth niches in production and storage areas, susceptibility testing should be performed on biofilms produced at refrigeration temperatures. Moreover, the efficiency of the sanitizers used in food industries should be performed on mixed culture biofilms, since in field conditions these will predominate. The results presented here highlight the importance of the temperature used for biofilm formation, when susceptibility to disinfectants is being assessed, as biofilms produced at lower temperature were less susceptible to sanitizers.
Salmonella can survive for long periods under extreme desiccation conditions. This stress tolerance poses a risk for food safety, but relatively little is known about the molecular and cellular regulation of this adaptation mechanism. To determine the genetic components involved in Salmonella’s cellular response to desiccation, we performed a global transcriptomic analysis comparing S. enterica serovar Typhimurium cells equilibrated to low water activity (aw 0.11) and cells equilibrated to high water activity (aw 1.0). The analysis revealed that 719 genes were differentially regulated between the two conditions, of which 290 genes were up-regulated at aw 0.11. Most of these genes were involved in metabolic pathways, transporter regulation, DNA replication/repair, transcription and translation, and, more importantly, virulence genes. Among these, we decided to focus on the role of sopD and sseD. Deletion mutants were created and their ability to survive desiccation and exposure to aw 0.11 was compared to the wild-type strain and to an E. coli O157:H7 strain. The sopD and sseD mutants exhibited significant cell viability reductions of 2.5 and 1.3 Log (CFU/g), respectively, compared to the wild-type after desiccation for 4 days on glass beads. Additional viability differences of the mutants were observed after exposure to aw 0.11 for 7 days. E. coli O157:H7 lost viability similarly to the mutants. Scanning electron microscopy showed that both mutants displayed a different morphology compared to the wild-type and differences in production of the extracellular matrix under the same conditions. These findings suggested that sopD and sseD are required for Salmonella’s survival during desiccation.
Multiplex-PCR (MPCR) serogrouping and pulsed-field gel electrophoresis (PFGE) subtyping analysis are currently used by several public and private laboratories for the characterization of Listeria monocytogenes. In this study a set of 80 L. monocytogenes isolates belonging to the twelve serovars was used to investigate (i) the typeability of the rare serovars, (ii) the ability of PFGE analysis with ApaI and AscI to differentiate serovars within MPCR serogroups and (iii) the association of molecular types with the specific source or geographical origin of the isolates. With the exception of three isolates (rare serovars 4a and 4c) that were not amenable to restriction with ApaI, all the other analyzed isolates were subtyped by both enzymes. PFGE discriminated the 80 isolates into 62 combined ApaI and AscI PFGE patterns (pulsotypes), but could not differentiate serovars within MPCR serogroups, in which isolates from different serovars displaying the same pulsotype were found. Clustering analysis suggests that for some pulsotypes grouping according to Portuguese origin or source can be suggested. On the other hand, some L. monocytogenes clones are widely distributed. Two pulsotypes from Portuguese human isolates were identical to the ones displayed by human outbreak clones in the UK and in the USA and Switzerland, respectively, although they were not temporally matched. Computer-assisted data analysis of large and diverse PFGE type databases will improve the correct interpretation of subtyping data in epidemiological studies and in tracing routes and sources of contamination in the food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.