Parkinson’s disease (PD) is an incurable neurodegenerative disease that is rarely diagnosed at an early stage. Although the understanding of PD-related mechanisms has greatly improved over the last decade, the diagnosis of PD is still based on neurological examination through the identification of motor symptoms, including bradykinesia, rigidity, postural instability, and resting tremor. The early phase of PD is characterized by subtle symptoms with a misdiagnosis rate of approximately 16–20%. The difficulty in recognizing early PD has implications for the potential use of novel therapeutic approaches. For this reason, it is important to discover PD brain biomarkers that can indicate early dopaminergic dysfunction through their changes in body fluids, such as saliva, urine, blood, or cerebrospinal fluid (CSF). For the CFS-based test, the invasiveness of sampling is a major limitation, whereas the other body fluids are easier to obtain and could also allow population screening. Following the identification of the crucial role of alpha-synuclein (α-syn) in the pathology of PD, a very large number of studies have summarized its changes in body fluids. However, methodological problems have led to the poor diagnostic/prognostic value of this protein and alternative biomarkers are currently being investigated. The aim of this paper is therefore to summarize studies on protein biomarkers that are alternatives to α-syn, particularly those that change in nigrostriatal areas and in biofluids, with a focus on blood, and, eventually, saliva and urine.
BackgroundThe SARS-CoV-2 pandemic stimulated an outstanding global sequencing effort, which allowed to monitor viral circulation and evolution. Nuoro province (Sardinia, Italy), characterized by a relatively isolated geographical location and a low population density, was severely hit and displayed a high incidence of infection.MethodsAmplicon approach Next Generation Sequencing and subsequent variant calling in 92 respiratory samples from SARS-CoV-2 infected patients involved in infection clusters from March 2020 to May 2021.ResultsPhylogenetic analysis displayed a coherent distribution of sequences in terms of lineage and temporal evolution of pandemic. Circulating lineage/clade characterization highlighted a growing diversity over time, with an increasingly growing number of mutations and variability of spike and nucleocapsid proteins, while viral RdRp appeared to be more conserved. A total of 384 different mutations were detected, of which 196 were missense and 147 synonymous ones. Mapping mutations along the viral genome showed an irregular distribution in key genes. S gene was the most mutated gene with missense and synonymous variants frequencies of 58.8 and 23.5%, respectively. Mutation rates were similar for the S and N genes with one mutation every ∼788 nucleotides and every ∼712 nucleotides, respectively. Nsp12 gene appeared to be more conserved, with one mutation every ∼1,270 nucleotides. The frequency of variant Y144F in the spike protein deviated from global values with higher prevalence of this mutation in the island.ConclusionThe analysis of the 92 viral genome highlighted evolution over time and identified which mutations are more widespread than others. The high number of sequences also permits the identification of subclusters that are characterized by subtle differences, not only in terms of lineage, which may be used to reconstruct transmission clusters. The disclosure of viral genetic diversity and timely identification of new variants is a useful tool to guide public health intervention measures.
Pyothorax-associated lymphoma (PAL) is a newly-described entity developing several decades after artificial pneumothorax treatment for pulmonary or pleural tuberculosis. It is known to be associated with Epstein-Barr virus (EBV) with constant expression of the two latent membrane proteins: latent membrane protein (LMP)-1 and EBV-associated nuclear antigen (EBNA)-2. We are reporting three new cases of PAL. All of the tumours were of B-cell lineage and classified as large-cell diffuse lymphomas according to the International Working Formulation for the Classification of Lymphomas. The EBV genome was detected in two of the cases with LMP-1 and EBNA-2 expression. No EBV could be detected in the third case suggesting that different mechanisms may be involved in the pathogenesis of the disease. Body cavity-based high grade lymphomas (BCBL) represent a new disease, developing mainly in human immunodeficiency virus (HIV) infected patients: the tumoural cells often contain both human herpes virus (HHV)-8 (or Kaposi's sarcoma herpes virus) and EBV genomes, suggesting that these viruses might co-operate in the pathogenesis of the disease. The pleural location and the association of EBV have led to speculation that PAL could also be related to HHV-8 infection. However, no HHV-8 genome could be detected in any of the 14 tested cases already reported in the literature nor in the two cases we studied (one EBV-positive and one EBV-negative), suggesting that PAL and BCBL are two different entities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.