A contributing factor to the failure of trials of neuroprotectants in acute ischemic stroke may be the differing vulnerability to ischemia of white compared with gray matter. To address this issue, we determined to establish the existence of potentially viable tissue in white matter and its evolution to infarction or salvage in both gray and white matter compartments in patients with ischemic stroke. Twenty-seven patients (mean age, 73.4 years) at a median of 16.5 hours after symptom onset were studied using the hypoxic marker 18F-misonidazole with positron emission tomography (PET). Tissue was segmented using an magnetic resonance probabilistic map. Although there was a greater volume of initially "at-risk tissue" in gray matter (58.3 cm3, 29.9-93.0 cm3 than white matter (42.0 cm3, 15.8-74.0 cm3; p <0.001) at the time of PET imaging, a higher proportion of this was still potentially viable in white matter (41.4%, 4.6-74.5%) than in gray matter (23.6%, 3.2-61.1%; p <0.05). However, a similar proportion in each compartment spontaneously survived. These data provide evidence for the existence of potentially salvageable tissue in human white matter and is consistent with it having a similar or even greater resistance to ischemia than gray matter. For the latter possibility, alternative therapeutic strategies may be required for its salvage.
Factors associated with increased mortality and prolonged length of stay in an adult intensive care unit Fatores associados à maior mortalidade e tempo de internação prolongado em uma unidade de terapia intensiva de adultos
The imaging and clinical examination (ICE) algorithm used in the Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure (BEST TRIP) randomized controlled trial is the only prospectively investigated clinical protocol for traumatic brain injury management without intracranial pressure (ICP) monitoring. As the default literature standard, it warrants careful evaluation. We present the ICE protocol in detail and analyze the demographics, outcome, treatment intensity, frequency of intervention usage, and related adverse events in the ICE-protocol cohort. The 167 ICE protocol patients were young (median 29 years) with a median Glasgow Coma Scale motor score of 4 but with anisocoria or abnormal pupillary reactivity in 40%. This protocol produced outcomes not significantly different from those randomized to the monitor-based protocol (favorable 6-month extended Glasgow Outcome Score in 39%; 41% mortality rate). Agents commonly employed to treat suspected intracranial hypertension included low-/moderate-dose hypertonic saline (72%) and mannitol (57%), mild hyperventilation (adjusted partial pressure of carbon dioxide 30-35 mm Hg in 73%), and pressors to maintain cerebral perfusion (62%). High-dose hyperosmotics or barbiturates were uncommonly used. Adverse event incidence was low and comparable to the BEST TRIP monitored group. Although this protocol should produce similar/acceptable results under circumstances comparable to those in the trial, influences such as longer pre-hospital times and non-specialist transport personnel, plus an intensive care unit model of aggressive physician-intensive care by small groups of neurotrauma-focused intensivists, which differs from most high-resource models, support caution in expecting the same results in dissimilar settings. Finally, this protocol's ICP-titration approach to suspected intracranial hypertension (vs. crisis management for monitored ICP) warrants further study.
Background: Coronavirus disease 19 (COVID-19) can develop into a severe respiratory syndrome that results in up to 40% mortality. Acute lung inflammatory edema is a major pathological finding in autopsies explaining O2 diffusion failure and hypoxemia. Only dexamethasone has been shown to reduce mortality in severe cases, further supporting a role for inflammation in disease severity. SARS-CoV-2 enters cells employing angiotensin-converting enzyme 2 (ACE2) as a receptor, which is highly expressed in lung alveolar cells. ACE2 is one of the components of the cellular machinery that inactivates the potent inflammatory agent bradykinin, and SARS-CoV-2 infection could interfere with the catalytic activity of ACE2, leading to the accumulation of bradykinin. Methods: In this case control study, we tested two pharmacological inhibitors of the kinin–kallikrein system that are currently approved for the treatment of hereditary angioedema, icatibant, and inhibitor of C1 esterase/kallikrein, in a group of 30 patients with severe COVID-19. Results: Neither icatibant nor inhibitor of C1 esterase/kallikrein resulted in changes in time to clinical improvement. However, both compounds were safe and promoted the significant improvement of lung computed tomography scores and increased blood eosinophils, which are indicators of disease recovery. Conclusions: In this small cohort, we found evidence for safety and a beneficial role of pharmacological inhibition of the kinin–kallikrein system in two markers that indicate improved disease recovery.
BackgroundProlonged use of mechanical ventilation (MV) leads to weakening of the respiratory muscles, especially in patients subjected to sedation, but this effect seems to be preventable or more quickly reversible using respiratory muscle training. The aims of the study were to assess variations in respiratory and hemodinamic parameters with electronic inspiratory muscle training (EIMT) in tracheostomized patients requiring MV and to compare these variations with those in a group of patients subjected to an intermittent nebulization program (INP).MethodsThis was a pilot, prospective, randomized study of tracheostomized patients requiring MV in one intensive care unit (ICU). Twenty-one patients were randomized: 11 into the INP group and 10 into the EIMT group. Two patients were excluded in experimental group because of hemodynamic instability.ResultsIn the EIMT group, maximal inspiratory pressure (MIP) after training was significantly higher than that before (P = 0.017), there were no hemodynamic changes, and the total weaning time was shorter than in the INP group (P = 0.0192).ConclusionThe EIMT device is safe, promotes an increase in MIP, and leads to a shorter ventilator weaning time than that seen in patients treated using INP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.