Perturbation of the boundary is a rather neglected topic in the study of PDEs for two main reasons. First, on the surface it appears trivial, merely a change of variables and an application of the chain rule. Second, carrying out such a change of variables frequently results in long and difficult calculations. In this book, first published in 2005, the author carefully discusses a calculus that allows the computational morass to be bypassed, and he goes on to develop more general forms of standard theorems, which help answer a wide range of problems involving boundary perturbations. Many examples are presented to demonstrate the usefulness of the author's approach, while on the other hand many tantalizing open questions remain. Anyone whose research involves PDEs will find something of interest in this book.
In this work we show, for a class of dissipative semilinear parabolic problems, that the global compact attractor varies continuously with respect to parameters in the equations. Applications to a parabolic problem with nonlinear boundary conditions are also obtained.
Abstract. In this paper we investigate the behavior of a family of steady state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a -neighborhood of a portion Γ of the boundary. We assume that this -neighborhood shrinks to Γ as the small parameter goes to zero. Also, we suppose the upper boundary of this -strip presents a highly oscillatory behavior. Our main goal here is to show that this family of solutions converges to the solutions of a limit problem, a nonlinear elliptic equation that captures the oscillatory behavior. Indeed, the reaction term and concentrating potential are transformed into a flux condition and a potential on Γ, which depends on the oscillating neighborhood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.