This paper presents an experimental study that aims to compare the practical performance of well-known metaheuristics for solving the parameter estimation problem in a dynamic systems context. The metaheuristics produce good quality approximations to the global solution of a finite small-dimensional nonlinear programming problem that emerges from the application of the sequential numerical direct method to the parameter estimation problem. Using statistical hypotheses testing, significant differences in the performance of the metaheuristics, in terms of the average objective function values and average CPU time, are determined. Furthermore, the best obtained solutions are graphically compared in relative terms by means of the performance profiles. The numerical comparisons with other results in the literature show that the tested metaheuristics are effective in achieving good quality solutions with a reduced computational effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.