Fibers loaded with either particles or cells are widely employed across a variety of fields, including material science, tissue engineering, and pharmaceutical research. However, the concentration of such objects along the fiber length remains stochastic, thus resulting in fibers having heterogeneous properties along their length. We here introduce a new class of material featuring fibers loaded with “equally spaced” microparticles. The fibers were obtained thanks to the combination between the recently discovered viscoelastic particle ordering phenomenon and the well-established process of fiber synthesis via ex situ ionic gelation. We employed a simple experimental apparatus made of a syringe pump connected to a 100 μm tube ending in a calcium chloride bath. The liquid forming the fiber was an aqueous solution of hyaluronic acid and sodium alginate. We studied the effect of volumetric flow rate, sodium alginate concentration, and spinning speed on the fiber diameter and the particle-spacing in the fiber. We also discussed the advantages of this type of fiber over the existing ones and suggested potential applications across several fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.