The attachment of labels onto DNA is of utmost importance in many areas of biomedical research and is valuable in the construction of DNA-based functional nanomaterials. The copper(I)-catalyzed Huisgen cycloaddition of azides and alkynes (CuAAC) has recently been added to the repertoire of DNA labeling methods, thus allowing the virtually unlimited functionalization of both small synthetic oligonucleotides and large gene fragments with unprecedented efficiency. The CuAAC reaction yields the labeled polynucleotides in very high purity after a simple precipitation step. The reviewed technology is currently changing the way in which functionalized DNA strands are generated cost-efficiently in high quality for their application in molecular diagnostics systems and nanotechnological research.
Letting off steam: A temperature‐controlled valve system permits the targeted release of guest fluorescein molecules from the pores of colloidal mesoporous silica particles. The pore‐opening temperature is dependent on the length of double‐stranded DNA linkers. Avidin proteins that are joined to the DNA by a biotin modification act as the molecular valve at the exits to the pores.
DNA-based self-assembled nanostructures are widely used to position organic and inorganic objects with nanoscale precision. A particular promising application of DNA structures is their usage as programmable carrier systems for targeted drug delivery. To provide DNA-based templates that are robust against degradation at elevated temperatures, low ion concentrations, adverse pH conditions, and DNases, we built 6-helix DNA tile tubes consisting of 24 oligonucleotides carrying alkyne groups on their 3'-ends and azides on their 5'-ends. By a mild click reaction, the two ends of selected oligonucleotides were covalently connected to form rings and interlocked DNA single strands, so-called DNA catenanes. Strikingly, the structures stayed topologically intact in pure water and even after precipitation from EtOH. The structures even withstood a temperature of 95 °C when all of the 24 strands were chemically interlocked.
An independent jump: Excess electrons move through DNA by using a hopping‐type mechanism in which the pyrimidine bases dT and dC act as ‘stepping stones’. It was shown that GC base pairs, in contrast to AT base pairs, lower the efficiency of the excess‐electron transfer through the duplex. Through the use of the shown DNA hairpins, three different electron acceptors (
) were investigated with the electron donor, reduced flavin (
).
DNA-based nanostructures have received great attention as molecular vehicles for cellular delivery of biomolecules and cancer drugs. Here, we report on the cellular uptake of tubule-like DNA tile-assembled nanostructures 27 nm in length and 8 nm in diameter that carry siRNA molecules, folic acid and fluorescent dyes. In our observations, the DNA structures are delivered to the endosome and do not reach the cytosol of the GFP-expressing HeLa cells that were used in the experiments. Consistent with this observation, no elevated silencing of the GFP gene could be detected. Furthermore, the presence of up to six molecules of folic acid on the carrier surface did not alter the uptake behavior and gene silencing. We further observed several challenges that have to be considered when performing in vitro and in vivo experiments with DNA structures: (i) DNA tile tubes consisting of 42 nt-long oligonucleotides and carrying single- or double-stranded extensions degrade within one hour in cell medium at 37 °C, while the same tubes without extensions are stable for up to eight hours. The degradation is caused mainly by the low concentration of divalent ions in the media. The lifetime in cell medium can be increased drastically by employing DNA tiles that are 84 nt long. (ii) Dyes may get cleaved from the oligonucleotides and then accumulate inside the cell close to the mitochondria, which can lead to misinterpretation of data generated by flow cytometry and fluorescence microscopy. (iii) Single-stranded DNA carrying fluorescent dyes are internalized at similar levels as the DNA tile-assembled tubes used here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.