This research studied the effect of accelerated carbonation in the physical, mechanical and chemical properties of a non-structural vibro-compacted porous concrete made with natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method and the CO2 capture capacity was also calculated. Two hardening environments were used: a carbonation chamber with 5% CO2 and a normal climatic chamber with atmospheric CO2 concentration. The effect of curing times of 1, 3, 7, 14 and 28 days on concrete properties was also analysed. The accelerated carbonation increased the dry bulk density, decreased the accessible porosity water, improved the compressive strength and decreased the setting time to reach a higher mechanical strength. The maximum CO2 capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t). Accelerate carbonation conditions led to an increase in carbon capture of 525% compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO2 capture and utilisation and a way to mitigate the effects of climate change, as well as promote the new circular economy paradigm.
In this research, the feasibility of using Acanthocardia tuberculata shell waste from the canning industry in the manufacturing of self-compacting mortar (SCM) was tested. The seashells were finely ground to be used as filler instead of the limestone filler normally used in this type of SCM. First, a physicochemical and microstructural characterisation of all raw materials was carried out, including the particle size distribution of both fillers. Subsequently, the self-compactability properties in the fresh state of SCM were evaluated using a total substitution by volume of limestone filler for seashell powder, using different self-compactiblity parameters. The mineralogical phases of all the SCM tested were identified once hardened by means of X-ray diffraction technique, thermogravimetric and differential thermal analysis. In addition, the mechanical properties, water absorption capacity, dry bulk density and accessible porosity of water of hardened mortars at 28 days of curing were analysed. The effect of replacing limestone filler by Acanthocardia tuberculata filler resulted in a decrease in compressive strength of 29.43, 16.84 and 2.29%, respectively. The results indicate that it is possible to completely replace natural limestone filler with Acanthocardia tuberculata shell filler without significantly affecting the mechanical properties of SCM.
The objective of the present study was to explore three types of vibro-compacted precast concrete mixtures replacing fine and coarse gravel with a recycled/mixed concrete aggregate (RCA or MCA). The portlandite phase found in RCA and MCA by XRD is a “potential” CO2 sink. CO2 curing improved the compressive strength in all the mixtures studied. One tonne of the mixtures studied could be decarbonised after only 7 days of curing 13,604, 36,077 and 24,635 m3 of air using natural aggregates, RCA or MCA, respectively. The compressive strength obtained, XRD, TGA/DTA and carbon emission evaluation showed that curing longer than 7 days in CO2 was pointless. The total CO2 emissions by a mixture using CO2 curing at 7 days were 221.26, 204.38 and 210.05 kg CO2 eq/m3 air using natural aggregates, RCA or MCA, respectively. The findings of this study provide a valuable contribution to carbon emission evaluation of CO2 curing in vibro-compacted precast concrete with recycled/mixed concrete aggregates (RCA or MCA). The technology proposed in this research facilitates carbon capture and use and guarantees enhanced compressive strength of the concrete samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.