In light of the Covid-19 outbreak, this review brings the historical and current literature efforts towards the development of antiviral metallodrugs. Classical compounds such as CTC-96 and auranofin are discussed...
Chalcones have attracted the attention of researchers for decades, they are biologically classified as secondary metabolites of low molecular weight. These are considered as the precursors of flavonoids and they are widely distributed in plants such as vegetables, fruits, teas and spices.
It has been demonstrating that chalcones possess many important bioactivities including properties of antioxidants and other evidence of its potential beneficial effects on health. Chalcone compounds and its derivatives have been showing a growing interest in the therapeutic properties. Nuclear
magnetic resonance (NMR) spectroscopy is one of the most important tools for determining the structures of organic molecules. In the work present a 13C Nuclear magnetic resonance chemical shift protocol of chalcones and derivative based on the application of scaling factor with
chalcone molecules. This protocol consists of using density functional theory with gauge-including atomic orbital method to calculating 13C chemical shifts and the application of a parameterized scaling factor in order to ensure accurate structural determination of chalcones and
derivative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.